Examinando por Autor "Hackl, Christoph"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Low sensitivity predictive control for doubly-fed induction generators based wind turbine applications(MDPI, 2021) Abdelrahem, Mohamed; Hackl, Christoph; Kennel, Ralph; Rodriguez, JoseIn this paper, a deadbeat predictive control (DBPC) technique for doubly-fed induction generators (DFIGs) in wind turbine applications is proposed. The major features of DBPC scheme are its quick dynamic performance and its fixed switching frequency. However, the basic concept of DBPC is computing the reference voltage for the next sample from the mathematical model of the generator. Therefore, the DBPC is highly sensitive to variations of the parameters of the DFIG. To reduce this sensitivity, a disturbance observer is designed in this paper to improve the robustness of the proposed DBPC scheme. The proposed observer is very simple and easy to be implemented in real-time applications. The proposed DBPC strategy is implemented in the laboratory. Several experiments are performed with and without mismatches in the DFIG parameters. The experimental results proved the superiority of the proposed DBPC strategy over the traditional DBPC technique.Ítem Multistep Model Predictive Control for Electrical Drives— A Fast Quadratic Programming Solution(MDPI, 2022-03) Xie, Haotian; Du, Jianming; Ke, Dongliang; He, Yingjie; Wang, Fengxiang; Hackl, Christoph; Rodríguez, José; Kennel, RalphDue to its merits of fast dynamic response, flexible inclusion of constraints and the ability to handle multiple control targets, model predictive control has been widely applied in the symmetry topologies, e.g., electrical drive systems. Predictive current control is penalized by the high current ripples at steady state because only one switching state is employed in every sampling period. Although the current quality can be improved at a low switching frequency by the extension of the prediction horizon, the number of searched switching states will grow exponentially. To tackle the aforementioned issue, a fast quadratic programming solver is proposed for multistep predictive current control in this article. First, the predictive current control is described as a quadratic programming problem, in which the objective function is rearranged based on the current derivatives. To avoid the exhaustive search, two vectors close to the reference derivative are preselected in every prediction horizon. Therefore, the number of searched switching states is significantly reduced. Experimental results validate that the predictive current control with a prediction horizon of 5 can achieve an excellent control performance at both steady state and transient state while the computational time is low. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.