Examinando por Autor "Hempel, Maren"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem A Sequoia in the Garden: FSR 1758 - Dwarf Galaxy or Giant Globular Cluster?(Institute of Physics Publishing, 2019-01) H. Barbá, Rodolfo; Minnit, Dante; Geisler, Douglas; Alonso-Garcí, Javier; Hempel, Maren; Monachesi, Antonela; . Arias, Julia I; A. Gómez, FacundoWe present the physical characterization of FSR 1758, a new large, massive object very recently discovered in the Galactic Bulge. The combination of optical data from the 2nd Gaia Data Release and the DECam Plane Survey and near-IR data from the VISTA Variables in the Vía Láctea Extended Survey led to a clean sample of likely members. Based on this integrated data set, position, distance, reddening, size, metallicity, absolute magnitude, and proper motion (PM) of this object are measured. We estimate the following parameters: α = 17:31:12, δ = -39:48:30 (J2000), D = 11.5 ±1.0 kpc, mag, R c = 10 pc, R t = 150 pc, dex, Mi < -8.6 ±1.0, μ α = -2.85 mas yr-1, and μ δ = 2.55 mas yr-1. The nature of this object is discussed. If FRS 1758 is a genuine globular cluster (GC), it is one of the largest in the Milky Way, with a size comparable or even larger than that of ω Cen, being also an extreme outlier in the size versus Galactocentric distance diagram. The presence of a concentration of long-period RR Lyrae variable stars and blue horizontal branch stars suggests that it is a typical metal-poor GC of Oosterhoff type II. Further exploration of a larger surrounding field reveals common PM stars, suggesting either tidal debris or that FRS 1758 is actually the central part of a larger extended structure such as a new dwarf galaxy, tentatively named Scorpius. In either case, this object is remarkable, and its discovery graphically illustrates the possibility of finding other large objects hidden in the Galactic Bulge using future surveys. © 2019. The American Astronomical Society. All rights reserved..Ítem Confirmation of a galaxy cluster hidden behind the Galactic bulge using the VVV survey(EDP Sciences, 2014-09) Coldwell, Georgina; Alonso, Sol; Duplancic, Fernanda; Hempel, Maren; Ivanov, Valentin D.; Minniti, DanteContext. S uzaku and Chandra X-ray observations detected a new cluster of galaxies, Suzaku J1759−3450, at a redshift z = 0.13. It is located behind the Milky Way, and the high Galactic dust extinction renders it nearly invisible at optical wavelengths. Aims. We attempt here to confirm the galaxy cluster with near-infrared imaging observations and to characterize its central member galaxies. Methods. Images from the VVV survey were used to detect candidate member galaxies of Suzaku J1759−3450 within the central region of the cluster up to 350 kpc from the X-ray peak emission. Color–magnitude diagrams, color–color diagrams, and morphology criteria allowed us to select the galaxies among the numerous foreground sources. Results. Fifteen candidate cluster members were found very close to a modeled red-sequence at the redshift of the cluster. Five members are extremely bright, and one is possibly a cD galaxy. The asymmetry in the spatial distribution of the galaxies with respect to the X-ray peak emission is an indicator that this cluster is still suffering a virialization process. Conclusions. Our investigation of Suzaku J1759−3450 demonstrates the potential of the VVV survey to study the hidden population of galaxies in the zone of avoidance.Ítem FSR 1716: A New Milky Way Globular Cluster Confirmed Using VVV RR Lyrae Stars(Institute of Physics Publishing, 2017-03) Minniti, Dante; Palma, Tali; Dékány, Istvan; Hempel, Maren; Rejkuba, Marina; Pullen, Joyce; Alonso-García, Javier; Barbá, Rodolfo; Barbuy, Beatriz; Bica, Eduardo; Bonatto, Charles; Borissova, Jura; Catelan, Marcio; Carballo-Bello, Julio A.; Chene, Andre Nicolas; Clariá, Juan José; Cohen, Roger E.; Contreras Ramos, Rodrigo; Dias, Bruno; Emerson, Jim; Froebrich, Dirk; Buckner, Anne S. M.; Geisler, Douglas; Gonzalez, Oscar A.; Gran, Felipe; Hagdu, Gergely; Irwin, Mike; Ivanov, Valentin D.; Kurtev, Radostin; Lucas, Philip W.; Majaess, Daniel; Mauro, Francesco; Moni-Bidin, Christian; Navarrete, Camila; Alegría, Sebastian Ramírez; Saito, Roberto K.; Valenti, Elena; Zoccali, ManuelaWe use deep multi-epoch near-IR images of the VISTA Variables in the Vía Láctea (VVV) Survey to search for RR Lyrae stars toward the Southern Galactic plane. Here, we report the discovery of a group of RR Lyrae stars close together in VVV tile d025. Inspection of the VVV images and PSF photometry reveals that most of these stars are likely to belong to a globular cluster that matches the position of the previously known star cluster FSR 1716. The stellar density map of the field yields a >100σ detection for this candidate globular cluster that is centered at equatorial coordinates R.A.J2000 = 16:10:30.0, decl.J2000 = -53:44:56 and galactic coordinates l = 329.77812, b = -1.59227. The color-magnitude diagram of this object reveals a well-populated red giant branch, with a prominent red clump at K s = 13.35 ±0.05, and J - K s = 1.30 ±0.05. We present the cluster RR Lyrae positions, magnitudes, colors, periods, and amplitudes. The presence of RR Lyrae indicates an old globular cluster, with an age >10 Gyr. We classify this object as an Oosterhoff type I globular cluster, based on the mean period of its RR Lyrae type ab, days, and argue that this is a relatively metal-poor cluster with [Fe/H] = -1.5 ±0.4 dex. The mean extinction and reddening for this cluster are and E(J - K s) = 0.72 ±0.02 mag, respectively, as measured from the RR Lyrae colors and the near-IR color-magnitude diagram. We also measure the cluster distance using the RR Lyrae type ab stars. The cluster mean distance modulus is (m - M)0 = 14.38 ±0.03 mag, implying a distance D = 7.5 ±0.2 kpc and a Galactocentric distance R G = 4.3 kpc. © 2017. The American Astronomical Society. All rights reserved.Ítem Radial Velocity Survey for Planets around Young stars (RVSPY): Target characterisation and high-cadence survey(EDP Sciences, 2022-11-01) Zakhozhay, Olga V.; Launhardt, Ralf; Müller, Andre; Brems, Stefan S.; Eigenthaler, Paul; Gennaro, Mario; Hempel, Angela; Hempel, Maren; Henning, Thomas; Kennedy, Grant M.; Kim, Sam; Kürster, Martin; Lachaume, Régis; Manerikar, Yashodhan; Patel, Jayshil A.; Pavlov, Alexey; Reffert, Sabine; Trifonov, TrifonContext. The occurrence rate and period distribution of (giant) planets around young stars is still not as well constrained as for older main-sequence stars. This is mostly due to the intrinsic activity-related complications and the avoidance of young stars in many large planet search programmes. Yet, dynamical restructuring processes in planetary systems may last significantly longer than the actual planet formation phase and may well extend long into the debris disc phase, such that the planet populations around young stars may differ from those observed around main-sequence stars. Aims. We introduce our Radial Velocity Survey for Planets around Young stars (RVSPY), which is closely related to the NaCo-ISPY direct imaging survey, characterise our target stars, and search for substellar companions at orbital separations smaller than a few au from the host star. Methods. We used the FEROS spectrograph, mounted to the MPG/ESO 2.2 m telescope in Chile, to obtain high signal-to-noise spectra and time series of precise radial velocities (RVs) of 111 stars, most of which are surrounded by debris discs. Our target stars have spectral types between early F and late K, a median age of 400 Myr, and a median distance of 45 pc. During the initial reconnaissance phase of our survey, we determined stellar parameters and used high-cadence observations to characterise the intrinsic stellar activity, searched for hot companions with orbital periods of up to 10 days, and derived the detection thresholds for longer-period companions. In our analysis we, have included archival spectroscopic data, spectral energy distribution, and data for photometric time series from the TESS mission. Results. For all target stars we determined their basic stellar parameters and present the results of the high-cadence RV survey and activity characterisation. We have achieved a median single-measurement RV precision of 6 m sa 1 and derived the short-term intrinsic RV scatter of our targets (median 23 m sa 1), which is mostly caused by stellar activity and decays with an age from >100 m sa 1 at <20 Myr to [removed]500 Myr. We analysed time series periodograms of the high-cadence RV data and the shape of the individual cross-correlation functions. We discovered six previously unknown close companions with orbital periods between 10 and 100 days, three of which are low-mass stars, and three are in the brown dwarf mass regime. We detected no hot companion with an orbital period [removed]