Examinando por Autor "Hirschmann, M."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem The cosmic growth of the active black hole population at 1 < z < 2 in zCOSMOS, VVDS and SDSS(Oxford University Press, 2015-03) Schulze, A.; Bongiorno, A.; Gavignaud, I.; Schramm, M.; Silverman, J.; Merloni, A.; Zamorani, G.; Hirschmann, M.; Mainieri, V.; Wisotzki, L.; Shankar, F.; Fiore, F.; Koekemoer, A.M.; Temporin, G.We present a census of the active black hole population at 1 < z < 2, by constructing the bivariate distribution function of black hole mass and Eddington ratio, employing a maximum likelihood fitting technique. The study of the active black hole mass function (BHMF) and the Eddington ratio distribution function (ERDF) allows us to clearly disentangle the active galactic nuclei (AGN) downsizing phenomenon, present in the AGN luminosity function, into its physical processes of black hole mass downsizing and accretion rate evolution. We are utilizing type-1 AGN samples from three optical surveys (VVDS, zCOSMOS and SDSS), that cover a wide range of 3 dex in luminosity over our redshift interval of interest. We investigate the cosmic evolution of the AGN population as a function of AGN luminosity, black hole mass and accretion rate. Compared to z = 0, we find a distinct change in the shape of the BHMF and the ERDF, consistent with downsizing in black hole mass. The active fraction or duty cycle of type-1 AGN at z ~ 1.5 is almost flat as a function of black hole mass, while it shows a strong decrease with increasing mass at z = 0. We are witnessing a phase of intense black hole growth, which is largely driven by the onset of AGN activity in massive SMBHs (supermassive black holes) towards z = 2. We finally compare our results to numerical simulations and semiempirical models and while we find reasonable agreement over certain parameter ranges, we highlight the need to refine these models in order to match our observations. © 2015 The Authors.Ítem The environmental dependence of the stellar and gas-phase mass-metallicity relation at 2 < z < 4(EDP Sciences, 2022-08-01) Calabrò, A.; Guaita, L.; Pentericci, L.; Fontanot, F.; Castellano, M.; De Lucia, G.; Garofalo, T.; Santini, P.; Cullen, F.; Carnall, A.; Garilli, B.; Talia, M.; Cresci, G.; Franco, M.; Fynbo, J.P.U.; Hathi, N.P.; Hirschmann, M.; Koekemoer, A.; Llerena, M.; Xie, L.In the local universe, galaxies in clusters typically show different physical and chemical properties compared to more isolated systems. Understanding how this difference originates, and whether it is already in place at high redshift, is still a matter of debate. Thanks to uniquely deep optical spectra available from the VANDELS survey, we investigate environmental effects on the stellar mass- metallicity relation (MZR) for a sample of nearly 1000 star-forming galaxies in the redshift range 2 < z < 4. We complement our dataset with the MOSFIRE follow-up of 21 galaxies to study the environmental dependence of the gas-phase MZR. Robust stellar and gas-phase metallicities are derived from well-calibrated photospheric absorptions features, respectively at 1501 and 1719Å in the stacked spectra, and from optical emission lines ([OII]λ λ3726-3729, [OIII] λ5007, and Hβ) in individual systems.We characterize the environment through multiple criteria by using the local galaxy density maps derived in the VANDELS fields to identify overdense structures and protoclusters of varying sizes. We find that environmental effects are weak at redshifts 2 < z < 4, and they are more important around the densest overdensity structures and protoclusters, where galaxies have a lower stellar metallicity (by ∼0:2 dex) and a lower gas-phase metallicity (by 0.1 dex) compared to the field, with a significance of 1σ and 2σ, respectively. Crucially, this downward offset cannot be explained by a selection effect due to a higher star formation rate, a fainter UV continuum, or different dust attenuations and stellar ages for galaxies in overdense enviroments with respect to the field. In spite of the still low signal-to-noise ratio of our results, we consider possible explanations of this environmental dependence. We propose a combination of increased mergers and high-speed encounters, more efficient AGN feedback in dense cores, and cold gas inflows from the cosmic web as viable physical mechanisms diluting the metal content of the cold gas reservoirs of overdense galaxies or expelling their metals to the intergalactic medium, even though additional studies are needed to determine the most significant scenario. Finally, some tensions remain between observations and both semi-analytic models and hydrodynamical simulations, which predict no significant metallicity offset as a function of host halo mass, suggesting that an explicit implementation of environmental processes in dense protocluster cores is needed. © ESO 2022.