Examinando por Autor "Iazeolla, C."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem 4D higher spin black holes with nonlinear scalar fluctuations(Springer Verlag, 2017-10) Iazeolla, C.; Sundell, P.We construct an infinite-dimensional space of solutions to Vasiliev’s equations in four dimensions that are asymptotic to AdS spacetime and superpose massless scalar particle modes over static higher spin black holes. Each solution is obtained by a large gauge transformation of an all-order perturbatively defined particular solution given in a simple gauge, in which the spacetime connection vanishes, the twistor space connection is holomorphic, and all local degrees of freedom are encoded into the residual twistor space dependence of the spacetime zero-forms. The latter are expanded over two dual spaces of Fock space operators, corresponding to scalar particle and static black hole modes, equipped with positive definite sesquilinear and bilinear forms, respectively. Switching on an AdS vacuum gauge function, the twistor space connection becomes analytic at generic spacetime points, which makes it possible to reach Vasiliev’s gauge, in which Fronsdal fields arise asymptotically, by another large transformation given here at first order. The particle and black hole modes are related by a twistor space Fourier transform, resulting in a black hole backreaction already at the second order of classical perturbation theory. We speculate on the existence of a fine-tuned branch of moduli space that is free from black hole modes and directly related to the quasi-local deformed Fronsdal theory. Finally, we comment on a possible interpretation of the higher spin black hole solutions as black-hole microstates.Ítem FRW and domain walls in higher spin gravity(Springer Verlag, 2018-03) Aros, R.; Iazeolla, C.; Noreña, J.; Sezgin, E.; Sundell, P.; Yin, Y.We present exact solutions to Vasiliev’s bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in space-time, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in (A)dS4. We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states. © 2018, The Author(s).