Examinando por Autor "Iazeolla, Carlo"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Fronsdal fields from gauge functions in Vasiliev’s higher spin gravity(Springer Verlag, 2019-10) Filippi, David De; Iazeolla, Carlo; Sundell, PerIn this paper, we revisit a number of issues in Vasiliev’s theory related to gauge functions, ordering schemes, and the embedding of Fronsdal fields into master fields. First, we parametrize a broad equivalence class of linearized solutions using gauge functions and integration constants, and show explicitly how Fronsdal fields and their Weyl tensors arise from these data in accordance with Vasiliev’s central on mass shell theorem. We then gauge transform the linearized piece of exact solutions, obtained in a convenient gauge in Weyl order, to the aforementioned class, where we land in normal order. We spell out this map for massless particle and higher spin black hole modes. Our results show that Vasiliev’s equations admit the correct free-field limit for master field configurations that relax the original regularity and gauge conditions in twistor space. Moreover, they support the off-shell Frobenius-Chern-Simons formulation of higher spin gravity for which Weyl order plays a crucial role. Finally, we propose a Fefferman-Graham-like scheme for computing asymptotically anti-de Sitter master field configurations, based on the assumption that gauge function and integration constant can be adjusted perturbatively so that the full master fields approach free master fields asymptotically. © 2019, The Author(s).Ítem On exact solutions and perturbative schemes in higher spin theory(MDPI Multidisciplinary Digital Publishing Institute, 2018) Iazeolla, Carlo; Sezgin, Ergin; Sundell, PerWe review various methods for finding exact solutions of higher spin theory in four dimensions, and survey the known exact solutions of (non)minimal Vasiliev's equations. These include instanton-like and black hole-like solutions in (A)dS and Kleinian spacetimes. A perturbative construction of solutions with the symmetries of a domain wall is also described. Furthermore, we review two proposed perturbative schemes: one based on perturbative treatment of the twistor space field equations followed by inverting Fronsdal kinetic terms using standard Green's functions; and an alternative scheme based on solving the twistor space field equations exactly followed by introducing the spacetime dependence using perturbatively defined gauge functions. Motivated by the need to provide a higher spin invariant characterization of the exact solutions, aspects of a proposal for a geometric description of Vasiliev's equation involving an infinite dimensional generalization of anti de Sitter space are revisited and improved. © 2018 by the authors.