Examinando por Autor "Ivanov, V.D."
Mostrando 1 - 12 de 12
Resultados por página
Opciones de ordenación
Ítem A qualitative classification of extraterrestrial civilizations(EDP Sciences, 2020-07) Ivanov, V.D.; Beamín, J.C.; Cáceres, C.; Minniti, D.Context. Interest in searches for extraterrestrial civilizations (ETCs) has been boosted in recent decades by the discovery of thousands of exoplanets. Aims. We turn to the classification of ETCs for new considerations that may help to design better strategies for searching for ETCs. Methods. This study is based on analogies with our own biological, historical, technological, and scientific development. We took a basic taxonomic approach to ETCs and investigated the implications of the new classification on ETC evolution and observational patterns. Finally, we used the quantitative scheme of Kardashev and considered its implications on the searches for ETCs as a counter example to our qualitative classification. Results. We propose a classification based on the abilities of ETCs to modify and integrate with their environments: Class 0 uses the environment as it is, Class 1 modifies the environment to fit its needs, Class 2 modifies itself to fit the environment, and a Class 3 ETC is fully integrated with the environment. Combined with the classical Kardashev scale, our scheme forms a two-dimensional method for interpreting ETC properties. Conclusions. The new framework makes it obvious that the available energy is not a unique measure of ETC progress: it may not even correlate with how well that energy is used. The possibility for progress without increased energy consumption implies a lower detectability, so in principle the existence of a Kardashev Type III ETC in the Milky Way cannot be ruled out. This reasoning weakens the Fermi paradox, allowing for the existence of advanced, yet not energy hungry, low-detectability ETCs. The integration of ETCs with the environment will make it impossible to tell technosignatures and natural phenomena apart. Therefore, the most likely opportunity for SETI searches to find advanced ETCs is to look for beacons, specifically set up by them for young civilizations like ours (if they would want to do that remains a matter of speculation). The other SETI window of opportunity is to search for ETCs at technological level similar to ours. To rephrase the famous saying of Arthur Clarke, sufficiently advanced civilizations are indistinguishable from nature. © ESO 2020.Ítem Candidate star clusters toward the inner Milky Way discovered on deep-stacked KS-band images from the VVV Survey(EDP Sciences, 2017) Ivanov, V.D.; Piatti, A.E.; Beamín, J.-C.; Minniti, D.; Borissova, J.; Kurtev, R.; Hempel, M.; Saito, R.K.This paper is based on observations made with ESO telescopes at the La Silla Paranal Observatory under program ID 092.B-0104(A). We have made extensive use of the SIMBAD Database at CDS (Centre de Données astronomiques) Strasbourg, the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, CalTech, under contract with NASA, and of the VizieR catalog access tool, CDS, Strasbourg, France. Support for J.B., D.M., J.C.B., R.K., M.H. is provided by the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. Support for R.K. is provided from Fondecyt Reg. No. 1130140. R.K.S. acknowledges support from CNPq/Brazil through project 310636/2013-2. We are grateful to the anonymous referee for useful suggestions that helped to improve the paper.Ítem Discovery of a brown dwarf companion to the A3V star β Circini(Oxford University Press, 2015-12) Smith, L.C.; Lucas, P.W.; Contreras Peña, C.; Kurtev, R.; Marocco, F.; Jones, H.R.A.; Beamin, J.C.; Napiwotzki, R.; Borissova, J.; Burningham, B.; Faherty, J.; Pinfield, D.J.; Gromadzki, M.; Ivanov, V.D.; Minniti, D.; Stimson, W.; Villanueva, V.We report the discovery of an L dwarf companion to the A3V star β Circini. VVV J151721.49−585131.5, or β Cir B, was identified in a proper motion and parallax catalogue of the VISTA Variables in the Vía Láctea survey as having near-infrared luminosity and colour indicative of an early L dwarf, and a proper motion and parallax consistent with that of β Cir. The projected separation of ∼3.6 arcmin corresponds to 6656 au, which is unusually wide. The most recent published estimate of the age of the primary combined with our own estimate based on newer isochrones yields an age of 370–500 Myr. The system therefore serves as a useful benchmark at an age greater than that of the Pleiades brown dwarfs and most other young L dwarf benchmarks. We have obtained a medium resolution echelle spectrum of the companion which indicates a spectral type of L1.0 ± 0.5 and lacks the typical signatures of low-surface gravity seen in younger brown dwarfs. This suggests that signs of low-surface gravity disappear from the spectra of early L dwarfs by an age of ∼370–500 Myr, as expected from theoretical isochrones. The mass of β Cir B is estimated from the BHAC15 isochrones as 0.056 ± 0.007 M⊙.Ítem New Galactic star clusters discovered in the disc area of the VVVX survey(Oxford University Press, 2018-12) Borissova, J.; Ivanov, V.D.; Lucas, P.W.; Kurtev, R.; Alonso-Garcia, J.; Ramírez Alegría, S.; Minniti, D.; Froebrich, D.; Hempel, M.; Medina, N.; Chené, A.-N.; Kuhn, M.A.The 'VISTA Variables in the Vía Láctea eXtended (VVVX)' ESO Public Survey is a nearinfrared photometric sky survey that covers nearly 1700 deg2 towards the Galactic disc and bulge. It is well-suited to search for newopen clusters, hidden behind dust and gas. The pipeline processed and calibrated KS-band tile images of 40 per cent of the disc area covered by VVVX was visually inspected for stellar overdensities. Then, we identified cluster candidates by examination of the composite JHKS colour images. The colour-magnitude diagrams of the cluster candidates are constructed. Whenever possible the Gaia DR2 parameters are used to calculate the mean proper motions, radial velocities, reddening and distances. We report the discovery of 120 new infrared clusters and stellar groups. Approximately half of them (47 per cent) are faint, compact, highly reddened, and they seem to be associated with other indicators of recent star formation, such as nearby Young Stellar Objects, Masers, HII regions or bubbles. The preliminary distance determinations allow us to trace the clusters up to 4.5 kpc, but most of the cluster candidates are centred at 2.2 kpc. The mean proper motions of the clusters show that in general they follow the disc motion of the Galaxy. © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.Ítem New VVV Survey Globular Cluster Candidates in the Milky Way Bulge(Institute of Physics Publishing, 2017-11) Minniti, D.; Geisler, D.; Alonso-Garcia, J.; Palma, T.; Beamin, J.C.; Borissova, J.; Catelan, M.; Clariá, J.J.; Cohen, R.E.; Ramos, R.C.; Dias, B.; Fernández-Trincado, J.G.; Gómez, M.; Hempel, M.; Ivanov, V.D.; Kurtev, R.; Lucas, P.W.; Moni-Bidin, C.; Pullen, J.; Alegria, S.R.; Saito, R.K.; Valenti, E.It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic bulge. High stellar density combined with high and differential interstellar reddening are the two major problems for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA Variables in the Via Láctea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions in our maps of bulge red giants, are confirmed as globular cluster candidates by their color-magnitude diagrams. We provide their coordinates as well as their near-IR color-magnitude diagrams, from which some basic parameters are derived, such as reddenings and heliocentric distances. The color-magnitude diagrams reveal well defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates exhibit a variety of extinctions (0.06 < A Ks < 2.77) and distances (5.3 < D < 9.5 kpc). We also classify the globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color-magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the Milky Way.Ítem Properties of the solar neighbor WISE J072003.20-084651.2(EDP Sciences, 2015-02) Ivanov, V.D.; Vaisanen, P.; Kniazev, A.Y.; Beletsky, Y.; Mamajek, E.E.; Mužić, K.; Beamín, J.C.; Boffin, H.M.J.; Pourbaix, D.; Gandhi, P.; Gulbis, A.; Monaco, L.; Saviane, I.; Kurtev, R.; Mawet, D.; Borissova, J.; Minniti, D.Context. The severe crowding towards the Galactic plane suggests that the census of nearby stars in that direction may be incomplete. Recently, Scholz reported a new M9 object at an estimated distance d ≃ 7 pc (WISE J072003.20- 084651.2; hereafter WISE J0720) at Galactic latitude b = 2.3°. Aims. Our goals are to determine the physical characteristics of WISE J0720, its kinematic properties, and to address the question of whether it is a binary object, as was suggested in the discovery paper. Methods. Optical and infrared spectroscopy from the Southern African Large Telescope and Magellan, respectively, and spectral energy distribution fitting were used to determine the spectral type of WISE J0720. The measured radial velocity, proper motion, and parallax yielded its Galactic velocities. We also investigated if WISE J0720 may show X-ray activity based on archival data. Results. Our spectra are consistent with spectral type L0 ± 1. We find no evidence for binarity, apart from a minor 2σ level difference in the radial velocities taken at two different epochs. The spatial velocity of WISE J0720 does not connect it to any known moving group; instead, it places the object with high probability in the old thin disk or in the thick disk. The spectral energy distribution fit hints at excess in the 12 μm and 22 μm WISE bands which may be due to a redder companion, but the same excess is visible in other late-type objects, and it more likely implies a shortcoming of the models (e.g., problems with the effective wavelengths of the filters for these extremely cool objects, etc.) rather than a disk or redder companion. The optical spectrum shows some Hα emission, indicative of stellar activity. Archival X-ray observations yield no detection. Conclusions. WISE J0720 is a new member of the solar neighborhood, the third nearest L dwarf. Our data do not support the hypothesis of its binary nature. © ESO 2015.Ítem Searching for faint comoving companions to the a Centauri system in the VVV survey infrared images(Oxford University Press, 2017-12) Beamín, J.C.; Minniti, D.; Pullen, J.B.; Ivanov, V.D.; Bendek, E.; Bayo, A.; Gromadzki, M.; Kurtev, R.; Lucas, P.W.; Butler, R.P.The VVV survey has observed the southern disc of the MilkyWay in the near-infrared, covering 240 deg2 in the ZYJHKs filters. We search the VVV survey images in a ~19 deg2 field around α Centauri, the nearest stellar system to the Sun, to look for possible overlooked companions that the baseline in time of VVV would be able to uncover. The photometric depth of our search reaches Y ~ 19.3mag, J ~ 19 mag, and Ks ~ 17 mag. This search has yielded no new companions in a Centauri system, setting an upper mass limit for any unseen companion well into the brown dwarf/planetary mass regime. The apparent magnitude limits were turned into effective temperature limits, and the presence of companion objects with effective temperatures warmer than 325K can be ruled out using different state-of-the-art atmospheric models. These limits were transformed into mass limits using evolutionary models, companions with masses above 11MJup were discarded, extending the constraints recently provided in the literature up to projected distances of d < 7000 au from a Cen AB and ~1 200 au from Proxima. In the next few years, the VVV extended survey (VVVX) will allow us to extend the search and place similar limits on brown dwarfs/planetary companions to a Cen AB for separations up to 20 000 au. © Crown copyright 2017.Ítem Spectrophotometric characterization of high proper motion sources from WISE(Oxford University Press, 2015-12) Beamín, J.C.; Ivanov, V.D.; Minniti, D.; Smart, R.L.; Muzić, K.; Mendez, R.A.; Beletsky, Y.; Bayo, A.; Gromadzki, M.; Kurtev, R.The census of the solar neighbourhood is almost complete for stars and becoming more complete in the brown dwarf regime. Spectroscopic, photometric and kinematic characterization of nearby objects helps us to understand the local mass function, the binary fraction, and provides new targets for sensitive planet searches. We aim to derive spectral types and spectrophotometric distances of a sample of new high proper motion sources found with the WISE (Wide-field Infrared Survey Explorer) satellite, and obtain parallaxes for those objects that fall within the area observed by the Vista Variables in the Vía Láctea survey (VVV). We used low-resolution spectroscopy and template fitting to derive spectral types, multiwavelength photometry to characterize the companion candidates and obtain photometric distances. Multi-epoch imaging from the VVV survey was used to measure the parallaxes and proper motions for three sources. We confirm a new T2 brown dwarf within ∼15 pc. We derived optical spectral types for 24 sources, mostly M dwarfs within 50 pc. We addressed the wide binary nature of 16 objects found by the WISE mission and previously known high proper motion sources. Six of these are probably members of wide binaries, two of those are new, and present evidence against the physical binary nature of two candidate binary stars found in the literature, and eight that we selected as possible binary systems. We discuss a likely microlensing event produced by a nearby low-mass star and a galaxy, that is to occur in the following five yearsÍtem Temperature constraints on the coldest brown dwarf known: WISE 0855-0714(EDP Sciences, 2014-10) Beamín, J.C.; Ivanov, V.D.; Bayo, A.; Mužić, K.; Boffin, H.M.J.; Allard, F.; Homeier, D.; Minniti, D.; Gromadzki, M.; Kurtev, R.; Lodieu, N.; Martin, E.L.; Mendez, R.A.Context. Nearby isolated planetary mass objects are beginning to be discovered, but their individual properties are poorly constrained because their low surface temperatures and strong molecular self-absorption make them extremely faint. Aims. We aimed to detect the near-infrared emission of the coldest brown dwarf (BD) found so far, WISE0855-0714, located ~2.2 pc away, and to improve its temperature estimate (Teff = 225−260 K) from a comparison with state-of-the-art models of BD atmospheres. Methods. We observed the field containing WISE0855-0714 with HAWK-I at the VLT in the Y band. For BDs with Teff< 500 K theoretical models predict strong signal (or rather less molecular absorption) in this band. Results. WISE0855-0714 was not detected in our Y-band images, thus placing an upper limit on its brightness to Y> 24.4 mag at 3σ level, leading to Y − [ 4.5 ] > 10.5. Combining this limit with previous detections and upper limits at other wavelengths, WISE0855-0714 is confirmed as the reddest BD detected, further supporting its status as the coldest known brown dwarf. We applied spectral energy distribution fitting with collections of models from two independent groups for extremely cool BD atmospheres leading to an effective temperature of Teff< 250 K,Ítem The Emergence of the Infrared Transient VVV-WIT-06(Institute of Physics Publishing, 2017-11) Minniti, D.; Saito, R.K.; Forster, F.; Pignata, G.; Ivanov, V.D.; Lucas, P.W.; Beamin, J.C.; Borissova, J.; Catelan, M.; Gonzalez, O.A.; Hempel, M.; Hsiao, E.; Kurtev, R.; Majaess, D.; Masetti, N.; Morrell, N.I.; Phillips, M.M.; Pullen, J.B.; Rejkuba, M.; Smith, L.; Surot, F.; Valenti, E.; Zoccali, M.We report the discovery of an enigmatic large-amplitude (ΔKs >10.5 mag) transient event in near-IR data obtained by the VISTA Variables in the Via Lactea (VVV) ESO Public Survey. The object (designated VVV-WIT- 06) is located at R.A.=17:07:18.917, decl.=-39:06:26.45 (J2000), corresponding to Galactic coordinates l=347.14539, b=0.88522. It exhibits a clear eruption, peaking at Ks=9 mag during 2013 July and fading to Ks ∼ 16.5 in 2017. Our late near-IR spectra show post-outburst emission lines, including some broad emission lines (upward of FWHM ∼ 3000 km s-1). We estimate a total extinction of AV = 10-15 mag in the surrounding field, and no progenitor was observed in ZYJHKs images obtained during 2010-2012 (down to Ks > 18.5mag). Subsequent deep near-IR imaging and spectroscopy, in concert with the available multiband photometry, indicate that VVV-WIT-06 may be either: (i) the closest Type I SN observed in about 400 years, (ii) an exotic highamplitude nova that would extend the known realm of such objects, or (iii) a stellar merger. In all of these cases, VVV-WIT-06 is a fascinating and curious astrophysical target under any of the scenarios considered.Ítem VVV high proper motion stars – I. The catalogue of bright KS ≤ 13.5 stars(OXFORD UNIV PRESS, 2016-09) Kurtev, R.; Gromadzki, M.; Beamín, J.C.; Folkes, S.L.; Pena Ramirez, K.; Ivanov, V.D.; Borissova, J.; Villanueva, V.; Minniti, D.; Mendez, R.; Lucas, P.W.; Smith, L.C.; Pinfield, D.J.; Kuhn, M.A.; Jones, H.R.A.; Antonova, A.; Yip, A.K.P.Knowledge of the stellar content near the Sun is important for a broad range of topics ranging from the search for planets to the study of Milky Way (MW) structure. The most powerful method for identifying potentially nearby stars is proper motion (PM) surveys. All old optical surveys avoid, or are at least substantially incomplete, near the Galactic plane. The depth and breadth of the 'VISTA Variables in Vía Láctea' (VVV) near-IR survey significantly improves this situation. Taking advantage of the VVV survey data base, we have measured PMs in the densest regions of the MW bulge and southern plane in order to complete the census of nearby objects. We have developed a custom PM pipeline based on VVV catalogues from the Cambridge Astronomy Survey Unit, by comparing the first epoch of JHKS with the multiepoch KS bands acquired later. Taking advantage of the large time baseline between the Two Micron All Sky Survey (2MASS) and the VVV observations, we also obtained 2MASS-VVV PMs.We present a near-IR PMcatalogue for the whole area of theVVVsurvey, which includes 3003 moving stellar sources. All of these have been visually inspected and are real PM objects. Our catalogue is in very good agreement with the PM data supplied in IR catalogues outside the densest zone of the MW. The majority of the PM objects in our catalogue are nearby M-dwarfs, as expected. This new data base allows us to identify 57 common PM binary candidates, among which are two new systems within 30 pc of the Sun.Ítem VVVX-Gaia discovery of a low luminosity globular cluster in the Milky Way disk(EDP Sciences, 2020-10) Garro, E.R.; Minniti, D.; Gómez, M.; Alonso-García, J.; Barbá, R.H.; Barbuy, B.; Clariá, J.J.; Chené, A.N.; Dias, B.; Hempel, M.; Ivanov, V.D.; Lucas, P.W.Context. Milky Way globular clusters (GCs) are difficult to identify at low Galactic latitudes because of high differential extinction and heavy star crowding. The new deep near-infrared (IR) images and photometry from the VISTA Variables in the Via Láctea Extended Survey (VVVX) allow us to chart previously unexplored regions. Aims. Our long term aim is to complete the census of Milky Way GCs. The immediate goals are to estimate the astrophysical parameters for the newly discovered GC candidates, measuring their reddenings, extinctions, distances, total luminosities, proper motions, sizes, metallicities, and ages. Methods. We used the near-IR VVVX survey database, in combination with the optical photometry and proper motions (PMs) from Gaia Data Release 2 (DR2), and with the Two Micron All Sky Survey photometry to search for and characterise new GCs within the southern Galactic plane (|b| < 5°). Results. We report the detection of a heretofore unknown Galactic GC at RA = 14:09:00.0; Dec =-65:37:12 (J2000) corresponding to l = 310.828 deg; and b =-3.944 deg in galactic coordinates. We calculate a reddening of E(J-Ks) = (0.3 ± 0.03) mag and an extinction of AKs = (0.15 ± 0.01) mag for this new GC. Its distance modulus and corresponding distance were measured as (m-M) = (15.93 ± 0.03) mag and D = (15.5 ± 1.0) kpc, respectively. We also estimate the metallicity and age by comparison with known GCs and by fitting PARSEC and Dartmouth isochrones, finding [Fe/H] = (-0.70 ± 0.2) dex and t = (11.0 ± 1.0) Gyr. The mean GC PMs from Gaia DR2 are μα∗ = (-4.68 ± 0.47) mas yr-1 and μδ = (-1.34 ± 0.45) mas yr-1. The total luminosity of our cluster is estimated to be MKs = (-7.76 ± 0.5) mag. The core and tidal radii from the radial density profile are rc ∼ 2.1′ (4.6 pc) and rt = 6.5′ (14.6 pc) at the cluster distance. Conclusions. We have found a new low luminosity, old and metal-rich GC, situated in the far side of the Galactic disk at RG = 11.2 kpc from the Galactic centre and at z = 1.0 kpc below the plane. Interestingly, the location, metallicity, and age of this GC are coincident with the Monoceros ring structure. © 2020 ESO.