Examinando por Autor "Ivison, R.J."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Alma spectroscopic survey in the hubble ultra deep field: co luminosity functions and the evolution of the cosmic density of molecular gas(Institute of Physics Publishing, 2016-12) Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; Da Cunha, Elisabete; Daddi, Emanuele; Ivison, R.J.; Popping, Gergö; Riechers, Dominik; Smail, Ian R.; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto J.; Bauer, Franz E.; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Fevre, Olivier Le; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; Van Der Wel, Arjen; Van Der Werf, Paul; Wagg, JeffIn this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 109 K km s−1 pc2 ). We find clear evidence of an evolution in the CO luminosity function with respect to z ∼ 0, with more CO-luminous galaxies present at z ∼ 2. The observed galaxies at z ∼ 2 also appear more gas-rich than predicted by recent semi analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z ∼ 2 to z ∼ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation (z ∼ 2).Ítem Alma spectroscopic survey in the hubble ultra deep field: survey description(Institute of Physics Publishing, 2016-12) Walter, Fabian; Decarli, Roberto; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; Cunha, Elisabete Da; Daddi, Emanuele; Ivison, R.J.; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Inami, Hanae; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Fevre, Olivier Le; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; Wel, Arjen Van Der; Werf, Paul Van Der; Wagg, JeffWe present the rationale for and the observational description of ASPECS: the ALMA SPECtroscopic Survey in the Hubble Ultra-Deep Field (UDF), the cosmological deep field that has the deepest multi-wavelength data available. Our overarching goal is to obtain an unbiased census of molecular gas and dust continuum emission in high-redshift (z > 0.5) galaxies. The ∼1′ region covered within the UDF was chosen to overlap with the deepest available imaging from the Hubble Space Telescope. Our ALMA observations consist of full frequency scans in band 3 (84–115 GHz) and band 6 (212–272 GHz) at approximately uniform line sensitivity (LCO¢ ~ 2 × 109 K km s−1 pc2 ), and continuum noise levels of 3.8 μJy beam−1 and 12.7 μJy beam−1 , respectively. The molecular surveys cover the different rotational transitions of the CO molecule, leading to essentially full redshift coverage. The [C II] emission line is also covered at redshifts 6.0 8.0 <Ítem The alma spectroscopic survey in the hubble ultra deep field: search for [CII] line and dust emission in 6 < z < 8 galaxies(Institute of Physics Publishing, 2016-12) Aravena, M.; Decarli, R.; Walter, F.; Bouwens, R.; Oesch, P.A.; Carilli, C.L.; Bauer, F.E.; Cunha, E. Da; Daddi, E.; Gónzalez-López, J.; Ivison, R.J.; Riechers, D.A.; Smail, I.; Swinbank, A.M.; Weiss, A.; Anguita, T.; Bacon, R.; Bell, E.; Bertoldi, F.; Cortes, P.; Cox, P.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Magnelli, B.; Ota, K.; Popping, G.; Van Der, Werf P.; Wagg, J.; Fudamoto, Y.We present a search for [C II] line and dust continuum emission from optical dropout galaxies at z > 6 using ASPECS, our Atacama Large Millimeter submillimeter Array Spectroscopic Survey in the Hubble Ultra-deep Field (UDF). Our observations, which cover the frequency range of 212–272 GHz, encompass approximately the range of 6 < z < 8 for [C II] line emission and reach a limiting luminosity of L[C II] ∼ (1.6–2.5) × 108 Le. We identify 14 [C II] line emitting candidates in this redshift range with significances >4.5σ, two of which correspond to blind detections with no optical counterparts. At this significance level, our statistical analysis shows that about 60% of our candidates are expected to be spurious. For one of our blindly selected [C II] line candidates, we tentatively detect the CO(6-5) line in our parallel 3 mm line scan. None of the line candidates are individually detected in the 1.2 mm continuum. A stack of all [C II] candidates results in a tentative detection with S1.2 mm = 14 ± 5 μJy. This implies a dust-obscured star-formation rate (SFR) of (3 ± 1) Me yr−1 . We find that the two highest-SFR objects have candidate [C II] lines with luminosities that are consistent with the low-redshift L[C II] versus SFR relation. The other candidates have significantly higher [C II] luminosities than expected from their UV-based SFR. At the current sensitivity, it is unclear whether the majority of these sources are intrinsically bright [C II] emitters, or spurious sources. If only one of our line candidates was real (a scenario greatly favored by our statistical analysis), we find a source density for [C II] emitters at 6 < z < 8 that is significantly higher than predicted by current models and some extrapolations from galaxies in the local universe.