Examinando por Autor "Kerber L.O."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem A deep view of a fossil relic in the Galactic bulge: The Globular Cluster HP 1(Oxford University Press, 2019-04-21) Kerber L.O.; Libralato M.; Souza S.O.; Oliveira R.A.P.; Ortolani S.; Pérez-Villegas A.HP 1 is an α-enhanced and moderately metal-poor bulge globular cluster with a blue horizontal branch. These combined characteristics make it a probable relic of the early star formation in the innermost Galactic regions. Here, we present a detailed analysis of a deep near-infrared (NIR) photometry of HP 1 obtained with the NIR GSAOI + GeMS camera at the Gemini-South telescope. J and K S images were collected with an exquisite spatial resolution (FWHM 1/40.1 arcsec), reaching stars at two magnitudes below the MSTO. We combine our GSAOI data with archival F606W-filter HST ACS/WFC images to compute relative proper motions and select bona fide cluster members. Results from statistical isochrone fits in the NIR and optical-NIR colour-magnitude diagrams indicate an age of 12.8 +0.9-0.8 Gyr, confirming that HP 1 is one of the oldest clusters in the Milky Way. The same fits also provide apparent distance moduli in the K S and V filters in very good agreement with the ones from 11 RR Lyrae stars. By subtracting the extinction in each filter, we recover a heliocentric distance of 6.59 +0.17-0.15 kpc. Furthermore, we refine the orbit of HP 1 using this accurate distance and update and accurate radial velocities (from high-resolution spectroscopy) and absolute proper motions (from Gaia DR2), reaching mean perigalactic and apogalactic distances of 1/40.12 and 1/43 kpc, respectively.Ítem Ages and metallicities of stellar clusters using S-PLUS narrow-band integrated photometry: the Small Magellanic Cloud(Oxford University Press, 2024-01) Fabiano De Souza G.; Westera P.; Almeida-Fernandes F.; Limberg G.; Dias B.; Hernandez-Jimenez J.A.; Herpich F.R.; Kerber L.O.; MacHado-Pereira E.; Perottoni H.D.; Guerço, Rafael; Li L.; Sampedro L.; Kanaan A.; Ribeiro T.; Schoenell W.; Mendes De Oliveira C.The Magellanic Clouds are the most massive and closest satellite galaxies of the Milky Way (MW), with stars covering ages from a few Myr up to 13 Gyr. This makes them important for validating integrated light methods to study stellar populations and star formation processes, which can be applied to more distant galaxies. We characterized a set of stellar clusters in the Small Magellanic Cloud (SMC), using the Southern Photometric Local Universe Survey. This is the first age (metallicity) determination for 11 (65) clusters of this sample. Through its seven narrow bands, centred on important spectral features, and five broad bands, we can retrieve detailed information about stellar populations. We obtained ages and metallicities for all stellar clusters using the Bayesian spectral energy distribution fitting code bagpipes. With a sample of clusters in the colour range -0.20 < r - z < +0.35, for which our determined parameters are most reliable, we modeled the age-metallicity relation of SMC. At any given age, the metallicities of SMC clusters are lower than those of both the Gaia Sausage-Enceladus disrupted dwarf galaxy and the MW. In comparison with literature values, differences are Δlog(age) ≈ 0.31 and Δ[Fe/H] ≈ 0.41, which is comparable to low-resolution spectroscopy of individual stars. Finally, we confirm a previously known gradient, with younger clusters in the centre and older ones preferentially located in the outermost regions. On the other hand, we found no evidence of a significant metallicity gradient. © 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.