Examinando por Autor "Kinemuchi, Karen"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem A New Sample of Warm Extreme Debris Disks from the ALLWISE Catalog(Institute of Physics, 2021-03-20) Moór, Attila; Ábrahám, Péter; Szabó, Gyula; Vida, Krisztián; Cataldi, Gianni; Derekas, Alíz; Henning, Thomas; Kinemuchi, Karen; Kóspál, Ágnes; Kovács, József; Pál, András; Sarkis, Paula; Seli, Bálint; Szabó, Zsófia M.; Takáts, KatalinExtreme debris disks (EDDs) are rare systems with peculiarly large amounts of warm dust that may stem from recent giant impacts between planetary embryos during the final phases of terrestrial planet growth. Here we report on the identification and characterization of six new EDDs. These disks surround F5-G9 type main-sequence stars with ages >100 Myr, have dust temperatures higher than 300 K, and fractional luminosities between 0.01 and 0.07. Using time-domain photometric data at 3.4 and 4.6 μm from the WISE all-sky surveys, we conclude that four of these disks exhibited variable mid-infrared (IR) emission between 2010 and 2019. Analyzing the sample of all known EDDs, now expanded to 17 objects, we find that 14 of them showed changes at 3-5 μm over the past decade, suggesting that mid-IR variability is an inherent characteristic of EDDs. We also report that wide-orbit pairs are significantly more common in EDD systems than in the normal stellar population. While current models of rocky planet formation predict that the majority of giant collisions occur in the first 100 Myr, we find that the sample of EDDs is dominated by systems older than this age. This raises the possibility that the era of giant impacts may be longer than we think, or that some other mechanism(s) can also produce EDDs. We examine a scenario where the observed warm dust stems from the disruption and/or collisions of comets delivered from an outer reservoir into the inner regions, and explore what role the wide companions could play in this process.Ítem The SDSS-IV extended baryon oscillation spectroscopic survey: Overview and early data(Institute of Physics Publishing, 2016-02) Dawson, Kyle S.; Kneib, Jean-Paul; Percival, Will J.; Alam, Shadab; Albareti, Franco D.; Anderson, Scott F.; Armengaud, Eric; Aubourg, Éric; Bailey, Stephen; Bautista, Julian E.; Berlind, Andreas A.; Bershady, Matthew A.; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R.; Blomqvist, Michael; Bolton, Adam S.; Bovy, Jo; Brandt, W.N.; Brinkmann, Jon; Brownstein, Joel R.; Burtin, Etienne; Busca, N.G.; Cai, Zheng; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Cope, Frances; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; Da Costa, Luiz N; Cousinou, Marie-Claude; Darling, Jeremy; De La MacOrra, Axel; De La Torre, Sylvain; Delubac, Timothée; Du Mas Des Bourboux, Hélion; Dwelly, Tom; Ealet, Anne; Eisenstein, Daniel J.; Eracleous, Michael; Escoffier, S.; Fan, Xiaohui; Finoguenov, Alexis; Font-Ribera, Andreu; Frinchaboy, Peter; Gaulme, Patrick; Georgakakis, Antonis; Green, Paul; Guo, Hong; Guy, Julien; Ho, Shirley; Holder, Diana; Huehnerhoff, Joe; Hutchinson, Timothy; Jing, Yipeng; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark A.; Laher, Russ R.; Lang, Dustin; Laurent, Pierre; Goff, Jean-Marc Le; Li, Cheng; Liang, Yu; Lima, Marcos; Lin, Qiufan; Lin, Weipeng; Lin, Yen-Ting; Long, Daniel C.; Lundgren, Britt; MacDonald, Nicholas; Maia, Marcio Antonio Geimba; Malanushenko, Elena; Malanushenko, Viktor; Mariappan, Vivek; McBride, Cameron K.; McGreer, Ian D.; Ménard, Brice; Merloni, Andrea; Meza, Andres; Montero-Dorta, Antonio D.; Muna, Demitri; Myers, Adam D.; Nandra, Kirpal; Naugle, Tracy; Newman, Jeffrey A.; Noterdaeme, Pasquier; Nugent, Peter; Ogando, Ricardo; Olmstead, Matthew D.; Oravetz, Audrey; Oravetz, Daniel J.; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Pâris, Isabelle; Peacock, John A.; Petitjean, Patrick; Pieri, Matthew M.; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Raichoor, Anand; Reid, Beth; Rich, James; Ridl, Jethro; Rodriguez-Torres, Sergio; Rosell, Aurelio Carnero; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Salvato, Mara; Sayres, Conor; Schneider, Donald P.; Schlegel, David J.; Seljak, Uros; Seo, Hee-Jong; Sesar, Branimir; Shandera, Sarah; Shu, Yiping; Slosar, Anže; Sobreira, Flavia; Streblyanska, Alina; Suzuki, Nao; Taylor, Donna; Tao, Charling; Tinker, Jeremy L.; Tojeiro, Rita; Vargas-Magaña, Mariana; Wang, Yuting; Weaver, Benjamin A.; Weinberg, David H.; White, Martin; Wood-Vasey, W.M.; Yeche, Christophe; Zhai, Zhongxu; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zhu, Guangtun Ben; Zou, HuIn a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance dA(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of dA(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on dA(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of dA(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.