Examinando por Autor "Kouro, Samir"
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem A bidirectional versatile buck–boost converter driver for electric vehicle applications(MDPI, 2021-08) González-Castaño, Catalina; Restrepo, Carlos; Kouro, Samir; Vidal-Idiarte, Enric; Calvente, JavierThis work presents a novel dc-dc bidirectional buck–boost converter between a battery pack and the inverter to regulate the dc-bus in an electric vehicle (EV) powertrain. The converter is based on the versatile buck–boost converter, which has shown an excellent performance in different fuel cell systems operating in low-voltage and hard-switching applications. Therefore, extending this converter to higher voltage applications such as the EV is a challenging task reported in this work. A high-efficiency step-up/step-down versatile converter can improve the EV powertrain efficiency for an extended range of electric motor (EM) speeds, comprising urban and highway driving cycles while allowing the operation under motoring and regeneration (regenerative brake) conditions. DC-bus voltage regulation is implemented using a digital two-loop control strategy. The inner feedback loop is based on the discrete-time sliding-mode current control (DSMCC) strategy, and for the outer feedback loop, a proportional-integral (PI) control is employed. Both digital control loops and the necessary transition mode strategy are implemented using a digital signal controller TMS320F28377S. The theoretical analysis has been validated on a 400 V 1.6 kW prototype and tested through simulation and an EV powertrain system testing. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Ítem A fast converging hybrid mppt algorithm based on abc and p&o techniques for a partially shaded pv system(MDPI, 2021-09) Restrepo, Carlos; Yanẽz-Monsalvez, Nicolas; González-Castaño, Catalina; Kouro, Samir; Rodriguez, JoseAmong all the conventional maximum power point tracking (MPPT) techniques for a photovoltaic (PV) system that have been proposed, incremental conductance (INC) and perturb and observe (P&O) are the most popular because of their simplicity and ease of implementation. However, under partial shading conditions (PSCs), these MPPT algorithms fail to track the global maximum power point (GMPP) and instead converge into local maximum power points (LMPPs), resulting in considerable PV power loss. This paper presents a new hybrid MPPT technique combining the artificial bee colony (ABC) and P&O algorithms named ABC-P&O. The P&O technique is used to track the MPP under uniform irradiance, and only during irradiance variations is the ABC algorithm employed. The effectiveness of the proposed hybrid algorithm at tracking the GMPP, under both uniform and nonuniform irradiance conditions, was assessed by hardware-in-the-loop (HIL) tests employed by a dc–dc boost converter. Then, the ABC-P&O strategy was applied to obtain the voltage reference for the outer PI control loop, which provided the current reference to the discrete-time sliding-mode current control. The ABC-P&O algorithm has a reasonable computational cost, allowing the use of a commercial, low-priced digital signal controller (DSC) with outer voltage and inner current control loops. Many challenging tests validated that the proposed ABC-P&O technique converges fast to the GMPP with high efficiency and superior performance under different PSCs.Ítem Dual-Boost Inverter for PV Microinverter Application—An Assessment of Control Strategies(MDPI, 2022-06) Lopez-Caiza, Diana; Renaudineau, Hugues; Muller, Nicolas; Flores-Bahamonde, Freddy; Kouro, Samir; Rodriguez, JosePhotovoltaic (PV) microinverters have grown rapidly in the small-scale PV market, where typical two-stage converters are used to connect one PV module to the single-phase AC grid. This configuration achieves better performance in terms of energy yield compared with other PV configu-rations. However, the conversion efficiency of a two-stage system is the main drawback, especially when a high-voltage gain effort is required. In this context, single-stage microinverter topologies have been recently proposed since only one power conversion stage is required to extract the maximum power of the PV module and inject the AC power to the grid. This single-stage configuration allows considerable improvement of the overall efficiency of microinverters by reducing the number of elements in the system. However, the main challenge of these topologies is their control, since all variables of the converter are composed by the AC waveform with DC-bias. In this paper, four control strategies are analyzed for the mainstream single-stage topology, which is the dual-boost inverter (DBI). Classical linear control and three non-linear strategies, namely finite control set–model predictive control, flatness-based control, and sliding mode control, are detailed. The main contribution of this work is a complete comparison of the control strategies, to give insights into the most suitable control strategy for the DBI in PV microinverter application.Ítem MPPT Algorithm Based on Artificial Bee Colony for PV System(Institute of Electrical and Electronics Engineers Inc., 2021) Gonzalez-Castano, Catalina; Restrepo, Carlos; Kouro, Samir; Rodriguez, JoseEnergy structures from non-conventional energy source has become highly demanded nowadays. In this way, the maximum power extraction from photovoltaic (PV) systems has attracted the attention, therefore an optimization technique is necessary to improve the performance of solar systems. This article proposes the use of ABC (artificial bee colony) algorithm for the maximum power point tracking (MPPT) of a PV system using a DC-DC converter. The procedure of the ABC MPPT algorithm is using data values from PV module, the P-V characteristic is identified and the optimal voltage is selected. Then, the MPPT strategy is applied to obtain the voltage reference for the outer PI control loop, which in turn provides the current reference to the predictive digital current programmed control. A real-time and high-speed simulator (PLECS RT Box 1) and a digital signal controller (DSC) are used to implement the hardware-in-the-loop system to obtain the results. The general system does not have a high computational cost and can be implemented in a commercial low-cost DSC (TI 28069M). The proposed MPPT strategy is compared to the conventional perturb and observe method, results show the proposed method archives a much superior performance.Ítem The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics(Institute of Electrical and Electronics Engineers Inc., 2016-05) Leon, Jose; Kouro, Samir; Franquelo, Leopoldo G.; Rodriguez, Jose; Wu, BinThe cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future. © 2016 IEEE.