Examinando por Autor "Kovalenko S."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem How low-scale trinification sheds light in the flavor hierarchies, neutrino puzzle, dark matter, and leptogenesis(American Physical Society, 2020-11) Cárcamo Hernández A.E.; Huong D.T.; Kovalenko S.; Morais A.P.; Pasechnik R.; Schmidt I.We propose a low-scale renormalizable trinification theory that successfully explains the flavor hierarchies and neutrino puzzle in the Standard Model (SM), as well as provides a dark matter candidate and also contains the necessary means for efficient leptogenesis. The proposed theory is based on the trinification SU(3)C×SU(3)L×SU(3)R gauge symmetry, which is supplemented with an additional flavor symmetry U(1)X×Z2(1)×Z2(2). In the proposed model the top quark and the exotic fermions acquire tree-level masses, whereas the lighter SM charged fermions gain masses radiatively at one-loop level. In addition, the light active neutrino masses arise from a combination of radiative and type-I seesaw mechanisms, with the Dirac neutrino mass matrix generated at one-loop level. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.Ítem Neutrinoless double-electron capture(American Physical Society, 2020-12) Blaum K.; Eliseev S.; Danevich F.A.; Tretyak V.I.; Kovalenko S.; Krivoruchenko M.I.; Novikov Yu.N.; Suhonen J.Double-beta processes play a key role in the exploration of neutrino and weak interaction properties, and in the searches for effects beyond the standard model. During the last half century many attempts were undertaken to search for double-beta decay with emission of two electrons, especially for its neutrinoless mode 0?2ß-, the latter having still not been observed. Double-electron capture (2EC) was not yet in focus because of its in general lower transition probability. However, the rate of neutrinoless double-electron capture 0?2EC can experience a resonance enhancement by many orders of magnitude when the initial and final states are energetically degenerate. In the resonant case, the sensitivity of the 0?2EC process can approach the sensitivity of the 0?2ß- decay in the search for the Majorana mass of neutrinos, right-handed currents, and other new physics. An overview of the main experimental and theoretical results obtained during the last decade in this field is presented. The experimental part outlines search results of 2EC processes and measurements of the decay energies for possible resonant 0?2EC transitions. An unprecedented precision in the determination of decay energies with Penning traps has allowed one to refine the values of the degeneracy parameter for all previously known near-resonant decays and has reduced the rather large uncertainties in the estimate of the 0?2EC half-lives. The theoretical part contains an updated analysis of the electron shell effects and an overview of the nuclear-structure models, in which the nuclear matrix elements of the 0?2EC decays are calculated. One can conclude that the decay probability of 0?2EC can experience a significant enhancement in several nuclides. © 2020 American Physical Society.Ítem Observation of Collider Muon Neutrinos with the SND@LHC Experiment(American Physical Society, 2023-07) Albanese R.; Alexandrov A.; Alicante F.; Anokhina A.; Asada T.; Battilana C.; Bay A.; Betancourt C.; Biswas R.; Blanco Castro A.; Bogomilov M.; Bonacorsi D.; Bonivento W.M.; Bordalo P.; Boyarsky A.; Buontempo S.; Campanelli M.; Camporesi T.; Canale V.; Castro A.; Centanni D.; Cerutti F.; Chernyavskiy M.; Choi K.-Y.; Cholak S.; Cindolo F.; Climescu M.; Conaboy A.P.; Dallavalle G.M.; Davino D.; De Bryas P.T.; De Lellis G.; De Magistris M.; De Roeck A.; De Rújula A.; De Serio M.; De Simone D.; Di Crescenzo A.; Donà R.; Durhan O.; Fabbri F.; Fedotovs F.; Ferrillo M.; Ferro-Luzzi M.; Fini R.A.; Fiorillo A.; Fresa R.; Funk W.; Garay Walls F.M.; Golovatiuk A.; Golutvin A.; Graverini E.; Guler A.M.; Guliaeva V.; Haefeli G.J.; Helo Herrera J.C.; Van Herwijnen E.; Iengo P.; Ilieva S.; Infantino A.; Iuliano A.; Jacobsson R.; Kamiscioglu C.; Kauniskangas A.M.; Khalikov E.; Kim S.H.; Kim Y.G.; Klioutchnikov G.; Komatsu M.; Konovalova N.; Kovalenko S.; Kuleshov S.; Lacker H.M.; Lantwin O.; Lasagni Manghi F.; Lauria A.; Lee K.Y.; Lee K.S.; Lo Meo S.; Loschiavo V.P.; Marcellini S.; Margiotta A.; Mascellani A.; Miano A.; Mikulenko A.; Montesi M.C.; Navarria F.L.; Ogawa S.; Okateva N.; Ovchynnikov M.; Paggi G.; Park B.D.; Pastore A.; Perrotta A.; Podgrudkov D.; Polukhina N.; Prota A.; Quercia A.; Ramos S.; Reghunath A.; Roganova T.; Ronchetti F.; Rovelli T.; Ruchayskiy O.; Ruf T.; Sabate Gilarte M.; Samoilov M.; Scalera V.; Schneider O.; Sekhniaidze G.; Serra N.; Shaposhnikov M.; Shevchenko V.; Shchedrina T.; Shchutska L.; Shibuya H.; Simone S.; Siroli G.P.; Sirri G.; Soares G.; Soto Sandoval O.J; Spurio M.; Starkov N.; Timiryasov I.; Tioukov V.; Tramontano F.; Trippl C.; Ursov E.; Ustyuzhanin A.; Vankova-Kirilova G.; Verguilov V.; Viegas Guerreiro Leonardo N.; Vilela C.; Visone C.; Wanke R.; Yaman E.; Yazici C.; Yoon C.S.; Zaffaroni E.; Zamora Saa J.We report the direct observation of muon neutrino interactions with the SND@LHC detector at the Large Hadron Collider. A dataset of proton-proton collisions at s=13.6 TeV collected by SND@LHC in 2022 is used, corresponding to an integrated luminosity of 36.8 fb-1. The search is based on information from the active electronic components of the SND@LHC detector, which covers the pseudorapidity region of 7.2<η<8.4, inaccessible to the other experiments at the collider. Muon neutrino candidates are identified through their charged-current interaction topology, with a track propagating through the entire length of the muon detector. After selection cuts, 8 νμ interaction candidate events remain with an estimated background of 0.086 events, yielding a significance of about 7 standard deviations for the observed νμ signal. © 2023 authors. Published by the American Physical Society. Published by the American Physical Society.