Examinando por Autor "Lane, Richard R."
Mostrando 1 - 12 de 12
Resultados por página
Opciones de ordenación
Ítem APOGEE chemical abundance patterns of the massive milky way satellites(IOP Publishing Ltd, 2021-12) Hasselquist, Sten; Hayes, Christian R; Lian, Jianhui; Weinberg, David H.; Zasowski, Gail; Horta, Danny; Beaton, Rachael; Feuillet, Diane K.; Garro, Elisa R.; Gallart, Carme; Smith, Verne V.; Holtzman, Jon A.; Minniti, Dante; Lacerna, Ivan; Shetrone, Matthew; Jönsson, Henrik; Cioni, Maria-Rosa L.; Fillingham, Sean P.; Cunha, Katia; O'Connell, Robert; Fernández-Trincado, José G.; Munoz, Ricardo R.; Schiavon, Ricardo; Almeida, Andres; Anguiano, Borja; Beers, Timothy C.; Bizyaev, Dmitry; Brownstein, Joel R.; Cohen, Roger E.; Frinchaboy, Peter; García-Hernández, D.A.; Geisler, Doug; Lane, Richard R.; Majewski, Steven R; Nidever, David L.; Nitschelm, Christian; Povick, Joshua; Price-Whelan, Adrian; Roman-Lopes, Alexandre; Rosado, Margarita; Sobeck, Jennifer; Stringfellow, Guy; Valenzuela, Octavio; Villanova, Sandro; Vincenzo, FiorenzoThe SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully disrupted Gaia Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [α/Fe]–[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the Magellanic Clouds (MCs) observed by Nidever et al. in the α-element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3–4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier (∼5–7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution.Ítem APOGEE-2S Mg-Al anti-correlation of the metal-poor globular cluster NGC 2298(EDP Sciences, 2022-06-01) Baeza, Ian; Fernández-Trincado, José G.; Villanova, Sandro; Geisler, Doug; Minniti, Dante; Garro, Elisa R.; Barbuy, Beatriz; Beers, Timothy C.; Lane, Richard R.We present detailed elemental abundances and radial velocities of stars in the metal-poor globular cluster (GC) NGC 2298, based on near-infrared high-resolution (R 22-500) spectra of 12 members obtained during the second phase of the Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) at Las Campanas Observatory as part of the seventeenth Data Release (DR 17) of the Sloan Digital Sky Survey IV (SDSS-IV). We employed the Brussels Automatic Code for Characterizing High accuracy Spectra (BACCHUS) software to investigate abundances for a variety of species including α elements (Mg, Si, and Ca), the odd-Z element Al, and iron-peak elements (Fe and Ni) located in the innermost regions of NGC 2298. We find a mean and median metallicity [Fe/H 1.76 and 1.75, respectively, with a star-to-star spread of 0.14 dex, which is compatible with the internal measurement errors. Thus, we find no evidence for an intrinsic [Fe/H] abundance spread in NGC 2298. The typical α-element enrichment in NGC 2298 is overabundant relative to the Sun, and it follows the trend of other metal-poor GCs. We confirm the existence of an Al-enhanced population in this cluster, which is clearly anti-correlated with Mg, indicating the prevalence of the multiple-population phenomenon in NGC 2298. © ESO 2022Ítem CAPOS: The bulge Cluster APOgee Survey II. The intriguing “Sequoia” globular cluster FSR 1758(EDP Sciences, 2021-08-01) Romero-Colmenares, María; Fernández-Trincado, José G.; Geisler, Doug; Souza, Stefano O.; Villanova, Sandro; Longa-Peña, Penélope; Minniti, Dante; Beers, Timothy C.; Bidin, Cristian Moni; Perez-Villegas, Angeles; Moreno, Edmundo; Garro, Elisa R.; Baeza, Ian; Henao, Lady; Barbuy, Beatriz; Alonso-García, Javier; Cohen, Roger E.; Lane, Richard R.; Muñoz, CesarWe present results from a study of 15 red giant members of the intermediate-metallicity globular cluster (GC) FSR 1758 using high-resolution, near-infrared spectra collected with the Apache Point Observatory Galactic Evolution Experiment II survey (APOGEE-2) that were obtained as part of CAPOS (the bulge Cluster APOgee Survey). Since its very recent discovery as a massive GC in the bulge region, evoking the name Sequoia, this has been an intriguing object with a highly debated origin, and initially led to the suggestion of a purported progenitor dwarf galaxy of the same name. In this work, we use new spectroscopic and astrometric data to provide additional clues as to the nature of FSR 1758. Our study confirms the GC nature of FSR 1758, and as such we report the existence of the characteristic N-C anticorrelation and Al-N correlation for the first time. We thereby reveal the existence of the multiple-population phenomenon, similar to that observed in virtually all GCs. Furthermore, the presence of a population with strongly enriched aluminum makes it unlikely that FSR 1758 is the remnant nucleus of a dwarf galaxy because Al-enhanced stars are uncommon in dwarf galaxies. We find that FSR 1758 is slightly more metal rich than previously reported in the literature; this source has a mean metallicity [Fe/H] between -1.43 to -1.36, depending on the adopted atmospheric parameters and a scatter within observational error, again pointing to its GC nature. Overall, the α-enrichment ( + 0.3 dex), Fe-peak (Fe, Ni), light (C, N), and odd-Z (Al) elements follow the trend of intermediate-metallicity GCs. Isochrone fitting in the Gaia bands yields an estimated age of ∼11.6 Gyr. We used the exquisite kinematic data, including our CAPOS radial velocities and Gaia eDR3 proper motions, to constrain the N-body density profile of FSR 1758, and found that it is as massive (∼2.9 ± 0.6 × 105 Mpdbl) as NGC 6752. We confirm a retrograde and eccentric orbit for FSR 1758. A new examination of its dynamical properties with the GravPot16 model favors an association with the Gaia-Enceladus-Sausage accretion event. Thus, paradoxically, the cluster that gave rise to the name of the Sequoia dwarf galaxy does not appear to belong to this specific merging event.Ítem CAPOS: the bulge Cluster APOgee Survey IV elemental abundances of the bulge globular cluster NGC 6558(Oxford University Press, 2023-12-01) González-Díaz, Danilo; Fernández-Trincado, José G.; Villanova, Sandro; Geisler, Doug; Barbuy, Beatriz; Minniti, Dante; Beers, Timothy C.; Bidin, Christian Moni; Mauro, Francesco; Muñoz, Cesar; Tang, Baitian; Soto, Mario; Monachesi, Antonela; Lane, Richard R.; Frelijj, HeinzThis study presents the results concerning six red giant stars members of the globular cluster NGC 6558. Our analysis utilized high-resolution near-infrared spectra obtained through the CAPOS initiative (the APOgee Survey of Clusters in the Galactic Bulge), which focuses on surveying clusters within the Galactic Bulge, as a component of the Apache Point Observatory Galactic Evolution Experiment II survey (APOGEE-2). We employ the Brussels Automatic Code for Characterizing High accUracy Spectra (BACCHUS) code to provide line-by-line elemental-abundances for Fe-peak (Fe, Ni), α-(O, Mg, Si, Ca, Ti), light-(C, N), odd-Z (Al), and the s-process element (Ce) for the four stars with high-signal-to-noise ratios. This is the first reliable measure of the CNO abundances for NGC 6558. Our analysis yields a mean metallicity for NGC 6558 of 〈[Fe/H]〉 = −1.15 ± 0.08, with no evidence for a metallicity spread. We find a Solar Ni abundance, 〈[Ni/Fe]〉 ∼ +0.01, and a moderate enhancement of α-elements, ranging between +0.16 and [removed] +0.99, along with a low level of carbon, [C/Fe] < −0.12. This behaviour of Nitrogen-Carbon is a typical chemical signature for the presence of multiple stellar populations in virtually all GCs; this is the first time that it is reported in NGC 6558. We also observed a remarkable consistency in the behaviour of all the chemical species compared to the other CAPOS bulge GCs of the same metallicity. © The Author(s) 2023.Ítem Galactic ArchaeoLogIcaL ExcavatiOns (GALILEO): I. An updated census of APOGEE N-rich giants across the Milky Way(EDP Sciences, 2022-07-01) Fernández Trincado, José G.; Beers, Timothy C.; Barbuy, Beatriz; Minniti, Dante; Chiappini, Cristina; Garro, Elisa R.; Tang, Baitian; Alves Brito, Alan; Villanova, Sandro; Geisler, Doug; Lane, Richard R.; Diaz, Danilo G.We use the 17th data release of the second phase of the Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) to provide a homogenous census of N-rich red giant stars across the Milky Way (MW). We report a total of 149 newly identified N-rich field giants toward the bulge, metal-poor disk, and halo of our Galaxy. They exhibit significant enrichment in their nitrogen abundance ratios ([N/Fe]³a+0.5), along with simultaneous depletions in their [C/Fe] abundance ratios ([C/Fe]< +0.15), and they cover a wide range of metallicities (1.8< [Fe/H]< 0.7). The final sample of candidate N-rich red giant stars with globular-cluster-like (GC-like) abundance patterns from the APOGEE survey includes a grand total of 412 unique objects. These strongly N-enhanced stars are speculated to have been stripped from GCs based on their chemical similarities with these systems. Even though we have not found any strong evidence for binary companions or signatures of pulsating variability yet, we cannot rule out the possibility that some of these objects were members of binary systems in the past and/or are currently part of a variable system. In particular, the fact that we identify such stars among the field stars in our Galaxy provides strong evidence that the nucleosynthetic process(es) producing the anomalous [N/Fe] abundance ratios occurs over a wide range of metallicities. This may provide evidence either for or against the uniqueness of the progenitor stars to GCs and/or the existence of chemical anomalies associated with likely tidally shredded clusters in massive dwarf galaxies such as Kraken/Koala, Gaia-Enceladus-Sausage, among others, before or during their accretion by the MW. A dynamical analysis reveals that the newly identified N-rich stars exhibit a wide range of dynamical characteristics throughout the MW, indicating that they were produced in a variety of Galactic environments. ©Ítem Is Terzan 5 the remnant of a building block of the Galactic bulge? Evidence from APOGEE(Oxford University Press, 2022-07-01) Taylor, Dominic J.; Mason, Andrew C.; Schiavon, Ricardo P.; Horta, Danny; Nataf, David M.; Geisler, Doug; Kisku, Shobhit; Phillips, Siân G.; Cohen, Roger E.; Fernández Trincado, José G.; Beers, Timothy C.; Bizyaev, Dmitry; García Hernández, Domingo Aníbal; Lane, Richard R.; Longa Peña, Penélope; Minniti, Dante; Muñoz, Cesar; Pan, Kaike; Villanova, SandroIt has been proposed that the globular cluster-like system Terzan 5 is the surviving remnant of a primordial building block of the Milky Way bulge, mainly due to the age/metallicity spread and the distribution of its stars in the α-Fe plane. We employ Sloan Digital Sky Survey data from the Apache Point Observatory Galactic Evolution Experiment to test this hypothesis. Adopting a random sampling technique, we contrast the abundances of 10 elements in Terzan 5 stars with those of their bulge field counterparts with comparable atmospheric parameters, finding that they differ at statistically significant levels. Abundances between the two groups differ by more than 1σ in Ca, Mn, C, O, and Al, and more than 2σ in Si and Mg. Terzan 5 stars have lower [α/Fe] and higher [Mn/Fe] than their bulge counterparts. Given those differences, we conclude that Terzan 5 is not the remnant of a major building block of the bulge. We also estimate the stellar mass of the Terzan 5 progenitor based on predictions by the Evolution and Assembly of GaLaxies and their Environments suite of cosmological numerical simulations, concluding that it may have been as low as ∼3 × 108 M⊙ so that it was likely unable to significantly influence the mean chemistry of the bulge/inner disc, which is significantly more massive (∼1010 M⊙). We briefly discuss existing scenarios for the nature of Terzan 5 and propose an observational test that may help elucidate its origin. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Ítem Signature of systemic rotation in 21 galactic globular clusters from APOGEE-2(EDP Sciences, 2024-08) Petralia, Ilaria; Minniti, Dante; Fernández-Trincado, José G.; Lane, Richard R.; Schiavon, Ricardo P.Context. Traditionally, globular clusters (GCs) have been assumed to be quasi-relaxed non-rotating systems, characterized by spherical symmetry and orbital isotropy. However, in recent years, a growing set of observational evidence has been unveiling an unexpected dynamical complexity in Galactic GCs. Indeed, kinematic studies have demonstrated that a measurable amount of internal rotation is present in many present-day GCs. Aims. The objective of this work is to analyse the APOGEE-2 value-added catalog (VAC) DR17 data of a sample of 21 GCs to extend the sample exhibiting signatures of systemic rotation and better understand the kinematic properties of GCs overall. Also, we aim to identify the fastest rotating GC from the sample of objects with suitable measurements. Methods. From the sample of 23 GCs included in this work, the presence of systemic rotation was detected in 21 of the GCs, using three different methods. All these methods use the radial velocity referred to the cluster systemic velocity (Ver). Using the first method, it was possible to visually verify the clear-cut signature of systemic rotation; whereas using the second and third methods, it was possible to determine the amplitude of the rotation curve (Arot) and the position angle (PA) of the rotation axis. Results. This study shows that 21 GCs have a signature of systemic rotation. For these clusters, the rotation amplitude and the position angle of the rotation axis (PA0) have been calculated. The clusters cover a remarkable range of rotational amplitudes, from 0.77 km s−1 to 13.85 km s−1 c The Authors 2024.Ítem Stellar Characterization and Radius Inflation of Hyades M-dwarf Stars from the APOGEE Survey(Institute of Physics, 2023-07-01) Wanderley, Fábio; Cunha, Katia; Souto, Diogo; Smith, Verne V.; Cao, Lyra; Pinsonneault, Marc; Allende Prieto, C.; Covey, Kevin; Masseron, Thomas; Pascucci, Ilaria; Stassun, Keivan G.; Terrien, Ryan; Bergsten, Galen J.; Bizyaev, Dmitry; Fernández-Trincado, José G.; Jönsson, Henrik; Hasselquist, Sten; Holtzman, Jon A.; Lane, Richard R.; Mahadevan, Suvrath; Majewski, Steven R.; Minniti, Dante; Pan, Kaike; Serna, Javier; Sobeck, Jennifer; Stringfellow, Guy S.We present a spectroscopic analysis of a sample of 48 M-dwarf stars (0.2 M ⊙ < M < 0.6 M ⊙) from the Hyades open cluster using high-resolution H-band spectra from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Our methodology adopts spectrum synthesis with LTE MARCS model atmospheres, along with the APOGEE Data Release 17 line list, to determine effective temperatures, surface gravities, metallicities, and projected rotational velocities. The median metallicity obtained for the Hyades M dwarfs is [M/H] = 0.09 ± 0.03 dex, indicating a small internal uncertainty and good agreement with optical results for Hyades red giants. Overall, the median radii are larger than predicted by stellar models by 1.6% ± 2.3% and 2.4% ± 2.3%, relative to a MIST and DARTMOUTH isochrone, respectively. We emphasize, however, that these isochrones are different, and the fractional radius inflation for the fully and partially convective regimes have distinct behaviors depending on the isochrone. Using a MIST isochrone there is no evidence of radius inflation for the fully convective stars, while for the partially convective M dwarfs the radii are inflated by 2.7% ± 2.1%, which is in agreement with predictions from models that include magnetic fields. For the partially convective stars, rapid rotators present on average higher inflation levels than slow rotators. The comparison with SPOTS isochrone models indicates that the derived M-dwarf radii can be explained by accounting for stellar spots in the photosphere of the stars, with 76% of the studied M dwarfs having up to 20% spot coverage, and the most inflated stars with ∼20%-40% spot coverage.Ítem Stellar Properties for a Comprehensive Collection of Star-forming Regions in the SDSS APOGEE-2 Survey* Based on SDSS Data Releases 16 and 17.(American Astronomical Society, 2023-02) Román-Zúñiga, Carlos G.; Kounkel, Marina; Hernández, Jesús; Peña Ramírez, Karla; López-Valdivia, Ricardo; Covey, Kevin R.; Stutz, Amelia M.; Roman-Lopes, Alexandre; Campbell, Hunter; Khilfeh, Elliott; Tapia, Mauricio; Stringfellow, Guy S.; Downes, Juan José; Stassun, Keivan G.; Minniti, Dante; Bayo, Amelia; Kim, Jinyoung Serena; Suárez, Genaro; Ybarra, Jason E.; Fernández-Trincado, José G.; Longa-Peña, Penélope; Ramírez-Preciado, Valeria; Serna, Javier; Lane, Richard R.; García-Hernández D.A.; Beaton, Rachael L.; Bizyaev, Dmitry; Pan, KaikeThe Sloan Digital Sky Survey IV APOGEE-2 primary science goal was to observe red giant stars throughout the Galaxy to study its dynamics, morphology, and chemical evolution. The APOGEE instrument, a high-resolution 300-fiber H-band (1.55-1.71 μm) spectrograph, is also ideal to study other stellar populations in the Galaxy, among which are a number of star-forming regions and young open clusters. We present the results of the determination of six stellar properties (T eff, log g , [Fe/H], L/L ⊙, M/M ⊙, and age) for a sample that is composed of 3360 young stars, of subsolar to supersolar types, in 16 Galactic star formation and young open cluster regions. Those sources were selected by using a clustering method that removes most of the field contamination. Samples were also refined by removing targets affected by various systematic effects of the parameter determination. The final samples are presented in a comprehensive catalog that includes all six estimated parameters. This overview study also includes parameter spatial distribution maps for all regions and Hertzsprung-Russell ( log L / L ⊙ vs. T eff) diagrams. This study serves as a guide for detailed studies on individual regions and paves the way for the future studies on the global properties of stars in the pre-main-sequence phase of stellar evolution using more robust samples. © 2023. The Author(s). Published by the American Astronomical Society.Ítem The chemical characterization of halo substructure in the Milky Way based on APOGEE(Oxford University Press, 2023-04) Horta, Danny; Schiavon, Ricardo P.; Mackereth, J. Ted; Weinberg, David H.; Hasselquist, Sten; Feuillet, Diane; O’Connell, Robert W.; Anguiano, Borja; Allende-Prieto, Carlos; Beaton, Rachael L.; Bizyaev, Dmitry; Cunha, Katia; Geisler, Doug; García-Hernández D.A.; Holtzman, Jon; Jönsson, Henrik; Lane, Richard R.; Majewski, Steve R.; Mészáros, Szabolcs; Minniti, Dante; Nitschelm, Christian; Shetrone, Matthew; Smith, Verne V.; Zasowski, GailGalactic haloes in a Λ-CDM universe are predicted to host today a swarm of debris resulting from cannibalized dwarf galaxies. The chemodynamical information recorded in their stellar populations helps elucidate their nature, constraining the assembly history of the Galaxy. Using data from APOGEE and Gaia, we examine the chemical properties of various halo substructures, considering elements that sample various nucleosynthetic pathways. The systems studied are Heracles, Gaia-Enceladus/Sausage (GES), the Helmi stream, Sequoia, Thamnos, Aleph, LMS-1, Arjuna, I’itoi, Nyx, Icarus, and Pontus. Abundance patterns of all substructures are cross-compared in a statistically robust fashion. Our main findings include: (i) the chemical properties of most substructures studied match qualitatively those of dwarf Milky Way satellites, such as the Sagittarius dSph. Exceptions are Nyx and Aleph, which are chemically similar to disc stars, implying that these substructures were likely formed in situ; (ii) Heracles differs chemically from in situ populations such as Aurora and its inner halo counterparts in a statistically significant way. The differences suggest that the star formation rate was lower in Heracles than in the early Milky Way; (iii) the chemistry of Arjuna, LMS-1, and I’itoi is indistinguishable from that of GES, suggesting a possible common origin; (iv) all three Sequoia samples studied are qualitatively similar. However, only two of those samples present chemistry that is consistent with GES in a statistically significant fashion; (v) the abundance patterns of the Helmi stream and Thamnos are different from all other halo substructures. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Ítem The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16(Institute of Physics Publishing, 2020-05) Donor, John; Frinchaboy, Peter M.; Cunha, Katia; O'connell, Julia E.; Prieto, Carlos Allende; Almeida, Andrés; Anders, Friedrich; Beaton, Rachael; Bizyaev, Dmitry; Brownstein, Joel R.; Carrera, Ricardo; Chiappini, Cristina; Cohen, Roger; García-Hernández D. A.; Geisler, Doug; Hasselquist, Sten; Jönsson, Henrik; Lane, Richard R.; Majewski, Steven R.; Minniti, Dante; Bidin, Christian Moni; Pan, Kaike; Roman-Lopes, Alexandre; Sobeck, Jennifer S.; Zasowski, GailThe Open Cluster Chemical Abundances and Mapping (OCCAM) survey aims to constrain key Galactic dynamical and chemical evolution parameters by the construction of a large, comprehensive, uniform, infrared-based spectroscopic data set of hundreds of open clusters. This fourth contribution from the OCCAM survey presents analysis using Sloan Digital Sky Survey/APOGEE DR16 of a sample of 128 open clusters, 71 of which we designate to be "high quality" based on the appearance of their color-magnitude diagram. We find the APOGEE DR16 derived [Fe/H] abundances to be in good agreement with previous high-resolution spectroscopic open cluster abundance studies. Using the high-quality sample, we measure Galactic abundance gradients in 16 elements, and find evolution of some of the [X/Fe] gradients as a function of age. We find an overall Galactic [Fe/H] versus R GC gradient of -0.068 ± 0.001 dex kpc-1 over the range of 6 < R GC < 13.9 kpc; however, we note that this result is sensitive to the distance catalog used, varying as much as 15%. We formally derive the location of a break in the [Fe/H] abundance gradient as a free parameter in the gradient fit for the first time. We also measure significant Galactic gradients in O, Mg, S, Ca, Mn, Cr, Cu, Na, Al, and K, some of which are measured for the first time. Our large sample allows us to examine four well-populated age bins in order to explore the time evolution of gradients for a large number of elements and comment on possible implications for Galactic chemical evolution and radial migration.Ítem The Open Cluster Chemical Abundances and Mapping Survey. VI. Galactic Chemical Gradient Analysis from APOGEE DR17(American Astronomical Society, 2022-09-01) Myers, Natalie; Donor, John; Spoo, Taylor; Frinchaboy, Peter M.; Cunha, Katia; Price Whelan, Adrian M.; Majewski, Steven R.; Beaton, Rachael L.; Zasowski, Gail; O'connell, Julia; Ray, Amy E.; Bizyaev, Dmitry; Chiappini, Cristina; García Hernández, D.A.; Geisler, Doug; Jönsson, Henrik; Lane, Richard R.; Longa Peña, Penélope; Minchev, Ivan; Minniti, Dante; Nitschelm, Christian; Roman Lopes, A.The goal of the Open Cluster Chemical Abundances and Mapping (OCCAM) survey is to constrain key Galactic dynamic and chemical evolution parameters by the construction and analysis of a large, comprehensive, uniform data set of infrared spectra for stars in hundreds of open clusters. This sixth contribution from the OCCAM survey presents analysis of SDSS/APOGEE Data Release 17 (DR17) results for a sample of stars in 150 open clusters, 94 of which we designate to be "high-quality"based on the appearance of their color-magnitude diagram. We find the APOGEE DR17-derived [Fe/H] values to be in good agreement with those from previous high-resolution spectroscopic open cluster abundance studies. Using a subset of the high-quality sample, the Galactic abundance gradients were measured for 16 chemical elements, including [Fe/H], for both Galactocentric radius (R GC) and guiding center radius (R guide). We find an overall Galactic [Fe/H] versus R GC gradient of -0.073 ± 0.002 dex kpc-1 over the range of 6 > R GC < 11.5 kpc, and a similar gradient is found for [Fe/H] versus R guide. Significant Galactic abundance gradients are also noted for O, Mg, S, Ca, Mn, Na, Al, K, and Ce. Our large sample additionally allows us to explore the evolution of the gradients in four age bins for the remaining 15 elements. © 2022. The Author(s). Published by the American Astronomical Society.