Examinando por Autor "Lanzafame, A. C."
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem Gaia-ESO Survey: Gas dynamics in the Carina nebula through optical emission lines(EDP SCIENCES, 2016-06) Damiani, F.; Bonito, R.; Magrini, L.; Prisinzano, L.; Mapelli, M.; Micela, G.; Kalari, V.; Maíz Apellániz, J.; Gilmore, G.; Randich, S.; Alfaro, E.; Flaccomio, E.; Koposov, S.; Klutsch, A.; Lanzafame, A. C.; Pancino, E.; Sacco, G. G.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Lardo, C.; Lewis, J.; Monaco, L.; Morbidelli, L.; Worley, C.; Zaggia, S.; Zwitter, T.; Dorda, R.Aims. We present observations from the Gaia-ESO Survey in the lines of Hα, [N II], [S II], and He I of nebular emission in the central part of the Carina nebula. Methods. We investigate the properties of the two already known kinematic components (approaching and receding), which account for the bulk of emission. Moreover, we investigate the features of the much less known low-intensity high-velocity (absolute RV >50 km s-1) gas emission. Results. We show that gas giving rise to Hα and He I emission is dynamically well correlated with but not identical to gas seen through forbidden-line emission. Gas temperatures are derived from line-width ratios, and densities from [S II] doublet ratios. The spatial variation of N ionization is also studied, and found to differ between the approaching and receding components. The main result is that the bulk of the emission lines in the central part of Carina arise from several distinct shell-like expanding regions, the most evident found around η Car, the Trumpler 14 core, and the star WR25. These “shells” are non-spherical and show distortions probably caused by collisions with other shells or colder, higher-density gas. Some of them are also partially obscured by foreground dust lanes, while very little dust is found in their interior. Preferential directions, parallel to the dark dust lanes, are found in the shell geometries and physical properties, probably related to strong density gradients in the studied region. We also find evidence that the ionizing flux emerging from η Car and the surrounding Homunculus nebula varies with polar angle. The high-velocity components in the wings of Hα are found to arise from expanding dust reflecting the η Car spectrum.Ítem The Gaia-ESO Survey: Inhibited extra mixing in two giants of the open cluster Trumpler 20?(EDP SCIENCES, 2016-06) Smiljanic, R.; Franciosini, E.; Randich, S.; Magrini, L.; Bragaglia, A.; Pasquini, L.; Vallenari, A.; Tautvaišienė, G.; Biazzo, K.; Frasca, A.; Donati, P.; Delgado Mena, E.; Casey, A. R.; Geisler, D.; Villanova, S.; Tang, B.; Sousa, S. G.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S. E.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Costado, M. T.; Hourihane, A.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Martell, S.Aims. We report the discovery of two Li-rich giants, with A(Li) ~ 1.50, in an analysis of a sample of 40 giants of the open cluster Trumpler 20 (with turnoff mass ~1.8 M⊙). The cluster was observed in the context of the Gaia-ESO Survey. Methods. The atmospheric parameters and Li abundances were derived using high-resolution UVES spectra. The Li abundances were corrected for nonlocal thermodynamical equilibrium (non-LTE) effects. Results. Only upper limits of the Li abundance could be determined for the majority of the sample. Two giants with detected Li turned out to be Li rich: star MG 340 has A(Li)non−LTE = 1.54 ± 0.21 dex and star MG 591 has A(Li)non−LTE = 1.60 ± 0.21 dex. Star MG 340 is on average ~0.30 dex more rich in Li than stars of similar temperature, while for star MG 591 this difference is on average ~0.80 dex. Carbon and nitrogen abundances indicate that all stars in the sample have completed the first dredge-up. Conclusions. The Li abundances in this unique sample of 40 giants in one open cluster clearly show that extra mixing is the norm in this mass range. Giants with Li abundances in agreement with the predictions of standard models are the exception. To explain the two Li-rich giants, we suggest that all events of extra mixing have been inhibited. This includes rotation-induced mixing during the main sequence and the extra mixing at the red giant branch luminosity bump. Such inhibition has been suggested in the literature to occur because of fossil magnetic fields in red giants that are descendants of main-sequence Ap-type stars.Ítem The Gaia-ESO Survey: pre-main-sequence stars in the young open cluster NGC 3293(OXFORD UNIV PRESS, 2016-05) Delgado, A. J.; Sampedro, L.; Alfaro, E. J.; Costado, M. T.; Yun, J. L.; Frasca, A.; Lanzafame, A. C.; Drew, J. E.; Eislöffel, J.; Blomme, R.; Morel, T.; Lobel, A.; Semaan, T.; Randich, S.; Jeffries, R. D.; Micela, G.; Vallenari, A.; Kalari, V.; Gilmore, G.; Flaccomio, E.; Carraro, G.; Lardo, C.; Monaco, L.; Prisinzano, L.; Sousa, S. G.; Morbidelli, L.; Lewis, J.; Koposov, S.; Hourihane, A.; Worley, C.; Casey, A.; Franciosini, E.; Sacco, G.; Magrini, L.The young open cluster NGC3293 is included in the observing program of the Gaia-ESO survey (GES). The radial velocity values provided have been used to assign cluster membership probabilities by means of a single-variable parametric analysis. These membership probabilities are compared to the results of the photometric membership assignment of NGC3293, based on UBVRI photometry. The agreement of the photometric and kinematic member samples amounts to 65 per cent, and could increase to 70 per cent as suggested by the analysis of the differences between both samples. A number of photometric PMS candidate members of spectral type F are found, which are confirmed by the results from VPHAS photometry and SED fitting for the stars in common with VPHAS and GES data sets. Excesses at mid- and near-infrared wavelengths, and signs of Hα emission, are investigated for them. Marginal presence of Hα emission or infilling is detected for the candidate members. Several of them exhibit moderate signs of U excess and weak excesses at mid-IR wavelengths. We suggest that these features originate from accretion discs in their last stages of evolution.Ítem The Gaia-ESO Survey: Stellar radii in the young open clusters NGC 2264, NGC 2547, and NGC 2516(EDP SCIENCES, 2016-02) Jackson, R. J.; Jeffries, R. D.; Randich, S.; Bragaglia, A.; Carraro, G.; Costado, M. T.; Flaccomio, E.; Lanzafame, A. C.; Lardo, C.; Monaco, L.; Morbidelli, L.; Smiljanic, R.; Zaggia, S.Context. Rapidly rotating, low-mass members of eclipsing binary systems have measured radii that are significantly larger than predicted by standard evolutionary models. It has been proposed that magnetic activity is responsible for this radius inflation. Aims. By estimating the radii of low-mass stars in three young clusters (NGC2264, NGC2547, NGC2516, with ages of similar to 5, similar to 35 and similar to 140Myr respectively), we aim to establish whether similar radius inflation is seen in single, magnetically active stars. Methods. We use radial velocities from the Gaia-ESO Survey (GES) and published photometry to establish cluster membership and then combine GES measurements of projected equatorial velocities with published rotation periods to estimate the average radii for groups of fast-rotating cluster members as a function of their luminosity and age. The average radii are compared with the predictions of both standard evolutionary models and variants that include magnetic inhibition of convection and starspots. Results. At a given luminosity, the stellar radii in NGC 2516 and NGC 2547 are larger than predicted by standard evolutionary models at the ages of these clusters. The discrepancy is least pronounced and not significant (similar to 10 per cent) in zero age main sequence stars with radiative cores, but more significant in lower-mass, fully convective pre main-sequence cluster members, reaching similar to 30 similar to 10 per cent. The uncertain age and distance of NGC 2264 preclude a reliable determination of any discrepancy for its members. Conclusions. The median radii we have estimated for low-mass fully convective stars in the older clusters are inconsistent (at the 2-3 sigma level) with non-magnetic evolutionary models and more consistent with models that incorporate the effects of magnetic fields or dark starspots. The available models suggest this requires either surface magnetic fields exceeding 2.5 kG, spots that block about 30 per cent of the photospheric flux, or a more moderate combination of both.Ítem The Gaia-ESO Survey: the selection function of the Milky Way field stars(Royal Astronomical Society, 2016-04) Stonkutė, E.; Koposov, S. E.; Howes, L. M.; Feltzing, S.; Worley, C. C.; Gilmore, G.; Ruchti, G. R.; Kordopatis, G.; Randich, S.; Zwitter, T.; Bensby, T.; Bragaglia, A.; Smiljanic, R.; Costado, M. T.; Tautvaišienė, G.; Casey, A. R.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.The Gaia-ESO Survey was designed to target all major Galactic components (i.e. bulge, thin and thick discs, halo and clusters), with the goal of constraining the chemical and dynamical evolution of the Milky Way. This paper presents the methodology and considerations that drive the selection of the targeted, allocated and successfully observed Milky Way field stars. The detailed understanding of the survey construction, specifically the influence of target selection criteria on observed Milky Way field stars is required in order to analyse and interpret the survey data correctly. We present the target selection process for the Milky Way field stars observed with Very Large Telescope/Fibre Large Array Multi Element Spectrograph and provide the weights that characterize the survey target selection. The weights can be used to account for the selection effects in the Gaia-ESO Survey data for scientific studies. We provide a couple of simple examples to highlight the necessity of including such information in studies of the stellar populations in the Milky Way.