Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Loyola, C."

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Modeling field evaporation degradation of metallic surfaces by first principles calculations: A case study for Al, Au, Ag, and Pd
    (Institute of Physics Publishing, 2018-06) Carrasco, T.; Peralta, J.; Loyola, C.; Broderick, S.R.
    Under the effects of an extreme electric field, the atoms on a metallic surface evaporate by breaking their bonds with the surface. In this work, we present the effects of a high electric field, by the use of computational simulations, for different metallic surface chemistries: Al, Au, Ag, and Pd. To model this bond breaking procedrure (i.e. field evaporation), we use density functional theory through the Quantum-Espresso (QE) simulation package, which incorporates the electric fields by adding a saw-like funcion into the Hamiltonian. This approach, known as dipole correction, was applied to all simulations as is implemented in the QE package. In this work, we calculate the evaporation field (Fe ) for all metallic species, which corresponds to the mean field at which atoms can break their bonds from the surface and evaporate. This result is compared with experimantal data from Atom Probe Tomography (APT) and computational data from prior simulations. © Published under licence by IOP Publishing Ltd.