Examinando por Autor "Lucertini, F."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem MINCE: I. Presentation of the project and of the first year sample(EDP Sciences, 2022-12-01) Cescutti, G.; Bonifacio, P.; Caffau, E.; Monaco, L.; Franchini, M.; Lombardo, L.; Matas Pinto, A.M.; Lucertini, F.; François, P.; Spitoni, E.; Lallement, R.; Sbordone, L.; Mucciarelli, A.; Spite, M.; Hansen, C.J.; Di Marcantonio, P.; Kučinskas, A.; Dobrovolskas, V.; Korn, A.J.; Valentini, M.; Magrini, L.; Cristallo, S.; Matteucci, F.Context. In recent years, Galactic archaeology has become a particularly vibrant field of astronomy, with its main focus set on the oldest stars of our Galaxy. In most cases, these stars have been identified as the most metal-poor. However, the struggle to find these ancient fossils has produced an important bias in the observations - in particular, the intermediate metal-poor stars (-2.5 < [Fe/H] <-1.5) have been frequently overlooked. The missing information has consequences for the precise study of the chemical enrichment of our Galaxy, in particular for what concerns neutron capture elements and it will be only partially covered by future multi object spectroscopic surveys such as WEAVE and 4MOST. Aims. Measuring at Intermediate Metallicity Neutron Capture Elements (MINCE) is gathering the first high-quality spectra (high signal-to-noise ratio, S/N, and high resolution) for several hundreds of bright and metal-poor stars, mainly located in our Galactic halo. Methods. We compiled our selection mainly on the basis of Gaia data and determined the stellar atmospheres of our sample and the chemical abundances of each star. Results. In this paper, we present the first sample of 59 spectra of 46 stars. We measured the radial velocities and computed the Galactic orbits for all stars. We found that 8 stars belong to the thin disc, 15 to disrupted satellites, and the remaining cannot be associated to the mentioned structures, and we call them halo stars. For 33 of these stars, we provide abundances for the elements up to zinc. We also show the chemical evolution results for eleven chemical elements, based on recent models. Conclusions. Our observational strategy of using multiple telescopes and spectrographs to acquire high S/N and high-resolution spectra for intermediate-metallicity stars has proven to be very efficient, since the present sample was acquired over only about one year of observations. Finally, our target selection strategy, after an initial adjustment, proved satisfactory for our purposes. © 2022 EDP Sciences. All rights reserved.Ítem Sulfur abundances in three Galactic clusters: Ruprecht 106, Trumpler 5, and Trumpler 20(Astronomy and Astrophysics, 2023-03-01) Lucertini, F.; Monaco, L.; Caffau, E.; Mucciarelli, A.; Villanova, S.; Bonifacio, P.; Sbordone, L.Context. Sulfur (S) is one of the lesser-studied α-elements. Published investigations of its behavior have so far focused on local stars, and only a few clusters of the Milky Way have been considered to study this topic. We aim to study the S content of the globular cluster Ruprecht 106 which has never before been studied for this purpose, but is known to present low levels of the [α/Fe] abundance ratio and the open cluster Trumpler 5. The only star studied so far in Trumpler 5 shows an unexpectedly low abundance of S. Aims. With this work, we aim to provide the first S abundance in Ruprecht 106 and to investigate the S content of Trumpler 5 with a larger sample of stars. The open cluster Trumpler 20 is considered as a reference object. Methods. We performed a standard abundance analysis based on 1D model atmospheres in local thermodynamical equilibrium (LTE) and on high-resolution and high-signal-to-noise-ratio UVES-slit and UVES/FLAMES spectra. We also applied corrections for nonLTE. The metallicities of the targets were obtained by studying equivalent widths. Sulfur abundances were derived from multiplets 1, 6, and 8 by spectrosynthesis. Results. We find that the metallicities of Ruprecht 106 and Trumpler 5 are [Fe/H] = 1.37±0.11 and [Fe/H] = 0.49±0.14, respectively. Ruprecht 106 is less S-rich than the other Galactic clusters at similar metallicity. The low S content of Ruprecht 106, [S/Fe]NLTE = 0.52±0.13, is consistent with its shortage of α-elements. This supports an extra-galactic origin of this cluster. We obtained a new and more robust S content value of Trumpler 5 of about [S/Fe]NLTE = 0.05±0.20. According to our results, Trumpler 5 follows the trend of the Galactic disk in the [S/Fe]LTE versus [Fe/H] diagram. Our results for Trumpler 20, of namely [Fe/H]= 0.06±0.15 and [S/Fe]NLTE = 0.28±0.21, are in agreement with those in the literature.