Examinando por Autor "Madrid, Alejandro"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Antifungal activity of eugenol analogues. Influence of different substituents and studies on mechanism of action(MDPI, 2012-01) Carrasco, Héctor; Raimondi, Marcela; Svetaz, Laura; Di Liberto, Melina; Rodriguez, María V.; Espinoza, Luis; Madrid, Alejandro; Zacchino, SusanaTwenty one phenylpropanoids (including eugenol and safrole) and synthetic analogues, thirteen of them new compounds, were evaluated for antifungal properties, first with non-targeted assays against a panel of human opportunistic pathogenic fungi. Some structure-activity relationships could be observed, mainly related to the influence of an allyl substituent at C-4, an OH group at C-1 and an OCH 3 at C-2 or the presence of one or two NO2 groups in different positions of the benzene ring. All active compounds were tested in a second panel of clinical isolates of C. albicans and non-albicans Candida spp., Cryptococcus neoformans and dermatophytes. The eugenol derivative 4-allyl-2-methoxy- 5-nitrophenol (2) was the most active structure against all strains tested, and therefore it was submitted to targeted assays. These studies showed that the antifungal activity of 2 was not reversed in the presence of an osmotic support such as sorbitol, suggesting that it does not act by inhibiting the fungal cell wall synthesis or assembly. On the other hand, the Ergosterol Assay showed that 2 did not bind to the main sterol of the fungal membrane up to 250 μg mL -1. In contrast, a 22% of fungal membrane damage was observed at concentrations = 1 × MIC and 71% at 4× MIC, when 2 was tested in the Cellular Leakage assay. The comparison of log P and MICs for all compounds revealed that the antifungal activity of the eugenol analogues would not to be related to lipophilicity. © 2012 by the authors.Ítem Effect of Electrical Stimulation on PC12 Cells Cultured in Different Hydrogels: Basis for the Development of Biomaterials in Peripheral Nerve Tissue Engineering(MDPI, 2023-12) Olguín, Yusser; Selva, Mónica; Benavente, Diego; Orellana, Nicole; Montenegro, Ivan; Madrid, Alejandro; Jaramillo-Pinto, Diego; Otero, María Carolina; Corrales, Tomas P.; Acevedo, Cristian A.Extensive damage to peripheral nerves is a health problem with few therapeutic alternatives. In this context, the development of tissue engineering seeks to obtain materials that can help recreate environments conducive to cellular development and functional repair of peripheral nerves. Different hydrogels have been studied and presented as alternatives for future treatments to emulate the morphological characteristics of nerves. Along with this, other research proposes the need to incorporate electrical stimuli into treatments as agents that promote cell growth and differentiation; however, no precedent correlates the simultaneous effects of the types of hydrogel and electrical stimuli. This research evaluates the neural differentiation of PC12 cells, relating the effect of collagen, alginate, GelMA, and PEGDA hydrogels with electrical stimulation modulated in four different ways. Our results show significant correlations for different cultivation conditions. Electrical stimuli significantly increase neural differentiation for specific experimental conditions dependent on electrical frequency, not voltage. These backgrounds allow new material treatment schemes to be formulated through electrical stimulation in peripheral nerve tissue engineering. © 2023 by the authors.Ítem Study on the cytotoxic activity of drimane sesquiterpenes and nordrimane compounds against cancer cell lines(MDPI AG, 2014) Montenegro, Ivan; Tomasoni, Giacomo; Bosio, Claudia; Quiñones, Natalia; Madrid, Alejandro; Carrasco, Hector; Olea, Andres; Martinez, Rolando; Cuellar, Mauricio; Villena, JoanTwelve drimanes, including polygodial (1), isopolygodial (2), drimenol (3), confertifolin (4), and isodrimenin (5), were obtained from natural sources. Semi-synthetic derivatives 6-12 were obtained from 1 and 2, and cytotoxic activity was evaluated in vitro against cancer cell lines (HT-29, MDA-MB231, DHF, MCF-7, PC-3, DU-145, and CoN). IC50 values were determined at concentrations of 12.5-100 ìM of each compound for 72 h. In addition, it was found that polygodial (1), 8, and 12 induced changes in mitochondrial membrane permeability in CoN, MCF-7, and PC-3 cells. © 2014 by the authors.Ítem Synthesis and NMR structure determination of new linear geranylphenols by direct geranylation of activated phenols.(Sociedad Chilena de Química, 2013) Taborga, Lautaro; Vergara, Alejandra; Fernández A., María José; Osorio, Mauricio; Carvajal, Marcela; Madrid, Alejandro; Marilaf, Francisco; Carrasco, Héctor; Espinoza Catalán, LuisThe known geranylhydroquinone 2, geranylorcinol 4 and the derivative (E)-4-(3,7-dimethylocta-2,6-dienyl)-5-methylbenzene-1,3-diol 5, were prepared by Electrophilic Aromatic Substitution (EAS) reactions between the corresponding phenol derivatives containing electron-donor subtituents and geraniol using BF3XOEt2 as a catalyst. In addition, spectroscopic NMR information for 4 and 5 is complemented. Furthermore, the new (E)-2-(3,7-dimethylocta-2,6-dienyl) benzene-1,3,5-triol (geranylphloroglucinol) 13, (E)-2-(3,7-dimethylocta-2,6-dienyl)-1,3,5-trimethoxybenzene 14, (E)-2-(3,7-dimethylocta-2,6-dienyl)-6-methoxyphenol 15, (E)-3-(3,7-dimethylocta-2,6-dienyl)-2-methoxyphenol 16, (E)-5-(3,7-dimethylocta-2,6-dienyl)-2-methoxyphenol 17, (E)-4-(3,7-dimethylocta-2,6-dienyl)benzene-1,3-diol 18, (E)-3-(3,7-dimethylocta-2,6-dienyl)benzene-1,2-diol 19, (E)-4-(3,7-dimethylocta-2,6-dienyl)-5-isopropyl-2-methylphenol 20, (E)-2-(3,7-dimethylocta-2,6-dienyl)-4-isopropyl-3-methylphenol 21, (E)-2-(3,7-dimethylocta-2,6-dienyl)-4-isopropyl-5-methylphenol 22, and(E)-2-tert-butyl-4-(3,7-dimethylocta-2,6-dienyl)-5-methylphenol 23 were also prepared with this synthesis strategy. All the synthesized compounds were fully characterized and their structures were established by IR, MS and mainly NMR spectroscopic dates.