Examinando por Autor "Marchetti, E."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem On the RR Lyrae Stars in Globulars. V. the Complete Near-infrared (JHK s) Census of ω Centauri RR Lyrae Variables(nstitute of Physics Publishing, 2018-03) Braga, V.F.; Stetson, P.B.; Bono, G.; Dall'Ora, M.; Ferraro, I.; Fiorentino, G.; Iannicola, G.; Marconi, M.; Marengo, M.; Monson, A.J.; Neeley, J.; Persson, S.E.; Beaton, R.L.; Buonanno, R.; Calamida, A.; Castellani, M.; Carlo, E.D.; Fabrizio, M.; Freedman, W.L.; Inno, L.; Madore, B.F.; Magurno, D.; Marchetti, E.; Marinoni, S.; Marrese, P.; Matsunaga, N.; Minniti, D.; Monelli, M.; Nonino, M.; Piersimoni, A.M.; Pietrinferni, A.; Prada-Moroni, P.; Pulone, L.; Stellingwerf, R.; Tognelli, E.; Walker, A.R.; Valenti, E.; Zoccali, M.We present a new complete near-infrared (NIR, JHK s) census of RR Lyrae stars (RRLs) in the globular ω Cen (NGC 5139). We collected 15,472 JHK s images with 4-8 m class telescopes over 15 years (2000-2015) covering a sky area around the cluster center of 60 ×34 arcmin2. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with 10 to 60 measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 (J), 176 (H) and 174 (K s) RRLs. These data were supplemented with single-epoch JK s magnitudes from VHS and with single-epoch H magnitudes from 2MASS. Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide JHK s magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed-mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P > 0.7 days) fundamental RRLs. Using predicted period-luminosity-metallicity relations, we derive a true distance modulus of 13.674 ± 0.008 ±0.038 mag (statistical error and standard deviation of the median) based on spectroscopic iron abundances, and of 13.698 ±0.004 ±0.048 mag based on photometric iron abundances. We also found evidence of possible systematics at the 5%-10% level in the zero-point of the period-luminosity relations based on the five calibrating RRLs whose parallaxes had been determined with the HST. © 2018. The American Astronomical Society. All rights reserved.Ítem Stellar density profile and mass of the Milky Way bulge from VVV data(EDP SCIENCES, 2016-03) Valenti, E.; Zoccali, M.; Gonzalez, O. A.; Minniti, D.; Alonso-García, J.; Marchetti, E.; Hempel, M.; Renzini, A.; Rejkuba, M.We present the first stellar density profile of the Milky Way bulge that reaches latitude b = 0 degrees. The profile was derived by counting red clump stars within the colour-magnitude diagram that was constructed using the new PSF-fitting photometry from VISTA Variables in the Via Lactea (VVV) survey data. The new stellar density map covers the area between vertical bar l vertical bar <= 10 degrees and vertical bar b vertical bar <= 45 degrees with unprecedented accuracy, allowing the stellar kinematics from the Giraffe Inner Bulge Spectroscopic Survey (GIBS) to be linked to the stellar mass density distribution. In particular, the location of the central velocity-dispersion peak from GIBS matches a high over-density in the VVV star count map. By scaling the total luminosity function (LF) obtained from all VVV fields to the LF from Zoccali et al.(2003), we obtain the first fully empirical estimate of the mass in stars and in remnants of the Galactic bulge. Within (vertical bar b vertical bar < 9.5 degrees, vertical bar l vertical bar < 10 degrees), the Milky Way bulge stellar mass is 2.0 +/- 0.3 x 10(10) M-circle dot..