Examinando por Autor "Marin, V."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Oxidation of isodrimeninol with PCC yields drimane derivatives with activity against candida yeast by inhibition of lanosterol 14-alpha demethylase(MDPI AG, 2020-08) Marin, V.; Iturra, A.; Opazo, A.; Schmidt, B.; Heydenreich, M.; Ortiz, L.; Jiménez, V.A.; Paz, C.Candida species cause an opportunistic yeast infection called Candidiasis, which is responsible for more than 50,000 deaths every year around the world. Effective treatments against candidiasis caused by non-albicans Candida species such as C. glabrata, C. parapsilosis, C. aureus, and C. krusei are limited due to severe resistance to conventional antifungal drugs. Natural drimane sesquiterpenoids have shown promising antifungal properties against Candida yeast and have emerged as valuable candidates for developing new candidiasis therapies. In this work, we isolated isodrimeninol (C1) from barks of Drimys winteri and used it as starting material for the hemi-synthesis of four sesquiterpenoids by oxidation with pyridinium chlorochromate (PCC). The structure of the products (C2, C3, C4, and C5) was elucidated by 1D and 2D NMR spectroscopy resulting in C4 being a novel compound. Antifungal activity assays against C. albicans, C. glabrata, and C. krusei revealed that C4 exhibited an increased activity (IC50 of 75 µg/mL) compared to C1 (IC50 of 125 µg/mL) in all yeast strains. The antifungal activity of C1 and C4 was rationalized in terms of their capability to inhibit lanosterol 14-alpha demethylase using molecular docking, molecular dynamics simulations, and MM/GBSA binding free energy calculations. In silico analysis revealed that C1 and C4 bind to the outermost region of the catalytic site of 14-alpha demethylase and block the entrance of lanosterol (LAN) to the catalytic pocket. Binding free energy estimates suggested that C4 forms a more stable complex with the enzyme than C1, in agreement with the experimental evidence. Based on this new approach it is possible to design new drimane-type sesquiterpenoids for the control of Candida species as inhibitors of 14-alpha demethylase. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Ítem Simple Finite-Control-Set Model Predictive Control of Grid-Forming Inverters with LCL Filters(Institute of Electrical and Electronics Engineers Inc., 2020) Young, H.; Marin, V.; Pesce, C.; Rodriguez, J.Grid-forming inverters (GFI) play an important role as power interfaces for distributed generation units in islanded microgrids, where inductive-capacitive-inductive (LCL) output filters are commonly employed to mitigate the harmonics injected by voltage-source inverters. Due to advantages such as fast dynamic response and straightforward handling of constraints, Finite-control-set model predictive control (FCS-MPC) has become an attractive option for voltage control in GFI systems. However, conventional FCS-MPC algorithms with short prediction horizon have performance limitations in the tracking of ac references in systems with high-order dynamics, such as LCL-filtered GFIs. On the other hand, predictive algorithms with extended prediction horizons suffer from an increased computational burden. This paper proposes a new FCS-MPC algorithm to accurately control the capacitor voltage in an LCL-filtered GFI, using a discrete-time prediction model to dynamically compute the reference for a FCS-MPC inverter-side current controller. The main advantages of the proposed method are its simple implementation without requiring the tuning of weighting factors in its cost function; and its short prediction horizon, which maintains a reduced computational cost. Moreover, active resonance damping elements such as digital filters or ad hoc feedback loops to deal with the LCL filter resonance are not required. Simulation tests and experimental results in a laboratory-scale setup confirm the effectiveness of the proposed control algorithm, yielding lower distortion of output voltage waveforms and increased robustness to modeling errors compared with the conventional FCS-MPC approach.