Examinando por Autor "Matharu, J."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem A Large-scale Kinematic Study of Molecular Gas in High-z Cluster Galaxies: Evidence for High Levels of Kinematic Asymmetry(Astrophysical Journal, 2023-02-01) Cramer, W. J.; Noble, A. G.; Massingill, K.; Cairns, J.; Clements, D. L.; Cooper, M. C.; Demarco, R.; Matharu, J.; McDonald, M.; Muzzin, A.; Nantais, J.; Rudnick, G.; Übler, H.; van Kampen, E.; Webb, T. M. A.; Wilson, G.; Yee, H. K. C.We investigate the resolved kinematics of the molecular gas, as traced by the Atacama Large Millimeter/submillimeter Array in CO (2−1), of 25 cluster member galaxies across three different clusters at a redshift of z ∼ 1.6. This is the first large-scale analysis of the molecular gas kinematics of cluster galaxies at this redshift. By separately estimating the rotation curve of the approaching and receding sides of each galaxy via kinematic modeling, we quantify the difference in total circular velocity to characterize the overall kinematic asymmetry of each galaxy. 3/14 of the galaxies in our sample that we are able to model have similar degrees of asymmetry as that observed in galaxies in the field at similar redshift based on observations of mainly ionized gas. However, this leaves 11/14 galaxies in our sample with significantly higher asymmetry, and some of these galaxies have degrees of asymmetry of up to ∼50 times higher than field galaxies observed at similar redshift. Some of these extreme cases also have one-sided tail-like morphology seen in the molecular gas, supporting a scenario of tidal and/or ram pressure interaction. Such stark differences in the kinematic asymmetry in clusters versus the field suggest the evolutionary influence of dense environments, established as being a major driver of galaxy evolution at low redshift, is also active in the high-redshift universe.Ítem Resolving CO (2-1) in z ∼ 1.6 Gas-rich Cluster Galaxies with ALMA: Rotating Molecular Gas Disks with Possible Signatures of Gas Stripping(Astrophysical Journal, 2019-01-10) Noble, A.G.; Muzzin, A.; McDonald, M.; Rudnick, G.; Matharu, J.; Cooper, M.C.; Demarco, R.; Lidman, C.; Nantais, J.; Van Kampen, E.; Webb, T.M.A.; Wilson, G.; Yee, H.K.C.We present the first spatially resolved observations of molecular gas in a sample of cluster galaxies beyond z > 0.1. Using ALMA, we detect CO (2-1) in eight z ∼ 1.6 cluster galaxies, all within a single 70″ primary beam. The cluster, SpARCS-J0225, was discovered by the Spitzer Adaptation of the Red-sequence Cluster Survey, and is replete with gas-rich galaxies in close proximity, thus affording an efficient multiplexing strategy to amass the first sample of resolved CO in distant clusters. Mapping out the kinematic structure and morphology of molecular gas on ∼3.5 kpc scales reveals rotating gas disks in the majority of the galaxies, and some kinematic peculiarities, including a central gas void, a merger, and one-sided gas tails. We find that the extent of the molecular gas is slightly smaller than that of the optical HST stellar component; this is even more pronounced in low-redshift Virgo cluster galaxies. However, limited by small sample sizes of spatially resolved CO, we are unable to differentiate the distribution of stellar-to-gas radii between cluster and field environments at high redshift. Thus, at first glance, while the cluster galaxies generally look like galaxies infalling from the field, with typical main-sequence star formation rates and massive molecular gas reservoirs situated in rotating disks, they have potentially remarkable attributes, including elevated gas fractions, slightly smaller CO disks, and asymmetric gas tails. Taken in tandem, these signatures are tentative evidence for gas stripping in the z ∼ 1.6 cluster, though verification of these trends will require larger samples.