Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "McDonald M."

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    A Large-scale Kinematic Study of Molecular Gas in High-z Cluster Galaxies: Evidence for High Levels of Kinematic Asymmetry
    (Institute of Physics, 2023-02-01) Cramer W.J.; Noble A.G.; Massingill K.; Cairns J.; Clements D.L.; Cooper M.C.; Demarco R.; Matharu J.; McDonald M.; Muzzin A.; Nantais J.; Rudnick G.
    We investigate the resolved kinematics of the molecular gas, as traced by the Atacama Large Millimeter/submillimeter Array in CO (2−1), of 25 cluster member galaxies across three different clusters at a redshift of z ∼ 1.6. This is the first large-scale analysis of the molecular gas kinematics of cluster galaxies at this redshift. By separately estimating the rotation curve of the approaching and receding sides of each galaxy via kinematic modeling, we quantify the difference in total circular velocity to characterize the overall kinematic asymmetry of each galaxy. 3/14 of the galaxies in our sample that we are able to model have similar degrees of asymmetry as that observed in galaxies in the field at similar redshift based on observations of mainly ionized gas. However, this leaves 11/14 galaxies in our sample with significantly higher asymmetry, and some of these galaxies have degrees of asymmetry of up to ∼50 times higher than field galaxies observed at similar redshift. Some of these extreme cases also have one-sided tail-like morphology seen in the molecular gas, supporting a scenario of tidal and/or ram pressure interaction. Such stark differences in the kinematic asymmetry in clusters versus the field suggest the evolutionary influence of dense environments, established as being a major driver of galaxy evolution at low redshift, is also active in the high-redshift universe.
  • Cargando...
    Miniatura
    Ítem
    The Evolution of Environmental Quenching Timescales to z ∼ 1.6: Evidence for Dynamically Driven Quenching of the Cluster Galaxy Population
    (Institute of Physics Publishing, 2018-10) Foltz R.; Wilson G.; Muzzin A.; Cooper M.C.; Nantais J.; Van Der Burg R.F.J.; Cerulo P.; Chan J.; Fillingham S.P.; Surace J.; Webb T.; Noble A.; McDonald M.; Rudnick G.; Lidman C.; Demarco R.; Hlavacek-Larrondo J.; Yee H.K.C.; Perlmutter S.; Hayden B.
    Using a sample of four galaxy clusters at 1.35 < z < 1.65 and 10 galaxy clusters at 0.85 < z < 1.35, we measure the environmental quenching timescale, t Q, corresponding to the time required after a galaxy is accreted by a cluster for it to fully cease star formation. Cluster members are selected by a photometric-redshift criterion, and categorized as star-forming, quiescent, or intermediate according to their dust-corrected rest-frame colors and magnitudes. We employ a "delayed-then-rapid" quenching model that relates a simulated cluster mass accretion rate to the observed numbers of each type of galaxy in the cluster to constrain t Q. For galaxies of mass M ∗ 1010.5 M o, we find a quenching timescale of t Q = Gyr in the z ∼ 1.5 cluster sample, and Gyr at z ∼ 1. Using values drawn from the literature, we compare the redshift evolution of t Q to timescales predicted for different physical quenching mechanisms. We find t Q to depend on host halo mass such that quenching occurs over faster timescales in clusters relative to groups, suggesting that properties of the host halo are responsible for quenching high-mass galaxies. Between z = 0 and z = 1.5, we find that t Q evolves faster than the molecular gas depletion timescale and slower than an estimated star formation rate-outflow timescale, but is consistent with the evolution of the dynamical time. This suggests that environmental quenching in these galaxies is driven by the motion of satellites relative to the cluster environment, although due to uncertainties in the atomic gas budget at high redshift, we cannot rule out quenching due to simple gas depletion. © 2018. The American Astronomical Society. All rights reserved..