Examinando por Autor "McLellan, Sandra L."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Microbial communities associated with farmed Genypterus chilensis: Detection in water prior to bacterial outbreaks using culturing high-throughput sequencing(MDPI AG, 2020-06) Levican, Arturo; Fisher, Jenny C.; McLellan, Sandra L.; Avendaño-Herrera, RubenThe red conger eel (Genypterus chilensis, Guichenot) is a native species included in the Chilean Aquaculture Diversification Program due to high commercial demand. In the context of intensified farming, prior reports link two disease outbreaks with emerging pathogens in the Vibrio and Tenacibaculum genera. However, the roles remain unclear for the bacterial community and each specific bacterium is associated with the rearing environment for healthy specimens. The success of red conger eel farming therefore warrants research into the bacterial composition of aquaculture conditions and the antimicrobial susceptibilities thereof. This study used culturing methods and high-throughput sequencing to describe the bacterial community associated with water in which G. chilensis was farmed. With culturing methods, the predominant genera were Vibrio (21.6%), Pseudolteromonas (15.7%), Aliivibrio (13.7%), and Shewanella (7.8%). Only a few bacterial isolates showed amylase, gelatinase, or lipase activity, and almost all showed inhibition zones to commonly- used antibiotics in aquaculture. By contrast, high-throughput sequencing established Paraperlucidibaca, Colwellia, Polaribacter, Saprospiraceae, and Tenacibaculum as the predominant genera, with Vibrio ranking twenty-seventh in abundance. High-throughput sequencing also established a link between previous outbreaks with increased relative abundances of Vibrio and Tenacibaculum. Therefore, monitoring the presence and abundance of these potential pathogens could be useful in providing prophylactic measures to prevent future outbreaks.Ítem Population dynamics and ecology of Arcobacter in sewage(Frontiers Media S.A., 2014-11) Fisher, Jenny C.; Levican, Arturo; Figueras, María J.; McLellan, Sandra L.Arcobacter species are highly abundant in sewage where they often comprise approximately 5-11% of the bacterial community. Oligotyping of sequences amplified from the V4V5 region of the 16S rRNA gene revealed Arcobacter populations from different cities were similar and dominated by 1-3 members, with extremely high microdiversity in the minor members. Overall, nine subgroups within the Arcobacter genus accounted for >80% of the total Arcobacter sequences in all samples analyzed. The distribution of oligotypes varied by both sample site and temperature, with samples from the same site generally being more similar to each other than other sites. Seven oligotypes matched with 100% identity to characterized Arcobacter species, but the remaining 19 abundant oligotypes appear to be unknown species. Sequences representing the two most abundant oligotypes matched exactly to the reference strains for A. cryaerophilus group 1B (CCUG 17802) and group 1A (CCUG 17801T), respectively. Oligotype 1 showed generally lower relative abundance in colder samples and higher relative abundance in warmer samples; the converse was true for Oligotype 2. Ten other oligotypes had significant positive or negative correlations between temperature and proportion in samples as well. The oligotype that corresponded to A. butzleri, the Arcobacter species most commonly isolated by culturing in sewage studies, was only the eleventh most abundant oligotype. This work suggests that Arcobacter populations within sewer infrastructure are modulated by temperature. Furthermore, current culturing methods used for identification of Arcobacter fail to identify some abundant members of the community and may underestimate the presence of species with affinities for growth at lower temperatures. Understanding the ecological factors that affect the survival and growth of Arcobacter spp. in sewer infrastructure may better inform the risks associated with these emerging pathogens. © 2014 Fisher, Levican, Figueras and McLellan.