Examinando por Autor "Meyer, H."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Climate and environmental changes of the Lategacial transition and Holocene in northeastern Siberia: Evidence from diatom oxygen isotopes and assemblage composition at Lake Emanda(Elsevier Ltd, 2021-05) Kostrova, S.S.; Biskaborn, B.K.; Pestryakova, L.A.; Fernandoy, F.; Lenz, M.M.; Meyer, H.A new dataset from Lake Emanda provides insights into climate and environmental dynamics in an extreme continental setting in northeastern Siberia. The δ18Odiatom record is supported by diatom assemblage analysis, modern isotope hydrology and atmospheric circulation patterns. The data reveal a relatively cold oligotrophic freshwater lake system persisting for the last ∼13.2 cal ka BP. Most recent δ18Odiatom (+21.5‰) combined with present-day average δ18Olake (−16.5‰) allows calculating Tlake (∼21 °C), reflecting summer conditions. Nonetheless, the δ18Odiatom variability is associated with changes in δ18Olake rather than with Tlake. An obvious shift of ∼2‰ in the δ18Odiatom record at 11.7–11.5 cal ka BP accompanied by significant changes in diatom assemblages reflects the onset of the Holocene. Relatively high δ18Odiatom during the Early Holocene suggests relatively warm and/or dry climate with associated evaporation effects. The absolute maximum in δ18Odiatom of +27.7‰ consistent with high values of diatom indices at ∼7.9–7.0 cal ka BP suggests a Mid Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since ∼5.0 cal ka BP is interpreted as Middle to Late Holocene cooling reaching the absolute minimum at 0.4 cal ka BP (i.e. the Little Ice Age). An overall cooling trend (∼0.3‰ 1000 yr−1) throughout the Holocene follows decreasing solar insolation. The pattern of the Lake Emanda δ18Odiatom record is similar to that obtained from Lake El'gygytgyn suggesting a common “eastern” regional signal in both records, despite their hydrological differences. Presently, atmospheric moisture reaches the study region from the west and east with ∼40% each, as well as ∼20% from the north. © 2021 The Author(s)Ítem Diatom oxygen isotope records of Northern Eurasia as indicators of environmental, hydrological and climate changes in the regions(Limnological Institute SB RAS, 2022-09-08) Kostrova, S.; Bailey, H.; Biskaborn, B.; Chapligin, B.; Dvornikov, Y.; Ekaykin, A.; Fernandoy, F.; Kozachek, A.; Kuhn, G.; Ludikova, A.; Meister, P.; Nazarova, L.; Pestryakova, L.; Shibaev, Y.; Syrykh, L.; Meyer, H.The environmental, hydrological and climate dynamics were assessed in Northern Eurasia during the Holocene. The reconstructions are based on oxygen isotope composition of lacustrine diatom silica (δ18Odiatom) preserved in sediment cores from Ladoga, Bolshoye Shchuchye and Emanda lakes. Interpretation of the δ18Odiatom data is supported by a comprehensive study of modern isotope hydrology and analysis of local and regional proxies. The Northern Eurasia δ18Odiatom records are characterized by pronounced short term variations (1.5–5‰), pointing to the unstable climatic and hydrological conditions in the study regions. All records have clearly demonstrated a gradual depletion over the Holocene in their δ18Odiatom values by ~3–4‰, which follows the trend of decreasing summer insolation, as well as the temperature history of the Northern Hemisphere (NH), indicating a positive response of diatom oxygen isotope signal to large-scale climate changes. © Author(s) 2022.Ítem Moisture origin and stable isotope characteristics of precipitation in southeast Siberia(John Wiley and Sons Ltd, 2020) Kostrova, S.; Meyer, H.; Fernandoy, F.; Werner, M.; Tarasov, P.The paper presents oxygen and hydrogen isotopes of 284 precipitation event samples systematically collected in Irkutsk, in the Baikal region (southeast Siberia), between June 2011 and April 2017. This is the first high-resolution dataset of stable isotopes of precipitation from this poorly studied region of continental Asia, which has a high potential for isotope-based palaeoclimate research. The dataset revealed distinct seasonal variations: relatively high δ18O (up to −4‰) and δD (up to −40‰) values characterize summer air masses, and lighter isotope composition (−41‰ for δ18O and −322‰ for δD) is characteristic of winter precipitation. Our results show that air temperature mainly affects the isotope composition of precipitation, and no significant correlations were obtained for precipitation amount and relative humidity. A new temperature dependence was established for weighted mean monthly precipitation: +0.50‰/°C (r2 = 0.83; p <.01; n = 55) for δ18O and +3.8‰/°C (r2 = 0.83, p < 0.01; n = 55) for δD. Secondary fractionation processes (e.g., contribution of recycled moisture) were identified mainly in summer from low d excess. Backward trajectories assessed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicate that precipitation with the lowest mean δ18O and δD values reaches Irkutsk in winter related to moisture transport from the Arctic. Precipitation originating from the west/southwest with the heaviest mean isotope composition reaches Irkutsk in summer, thus representing moisture transport across Eurasia. Generally, moisture transport from the west, that is, the Atlantic Ocean predominates throughout the year. A comparison of our new isotope dataset with simulation results using the European Centre/Hamburg version 5 (ECHAM5)-wiso climate model reveals a good agreement of variations in δ18O (r2 = 0.87; p <.01; n = 55) and air temperature (r2 = 0.99; p <.01; n = 71). However, the ECHAM5-wiso model fails to capture observed variations in d excess (r2 = 0.14; p < 0.01; n = 55). This disagreement can be partly explained by a model deficit of capturing regional hydrological processes associated with secondary moisture supply in summer.Ítem New insights into the use of stable water isotopes at the northern Antarctic Peninsula as a tool for regional climate studies(Copernicus GmbH, 2018-03) Fernandoy, F.; Tetzner, D.; Meyer, H.; Gacitúa, G.; Hoffmann, K.; Falk, U.; Lambert, F.; MacDonell, S.Due to recent atmospheric and oceanic warming, the Antarctic Peninsula is one of the most challenging regions of Antarctica to understand in terms of both local-and regional-scale climate signals. Steep topography and a lack of long-term and in situ meteorological observations complicate the extrapolation of existing climate models to the sub-regional scale. Therefore, new techniques must be developed to better understand processes operating in the region. Isotope signals are traditionally related mainly to atmospheric conditions, but a detailed analysis of individual components can give new insight into oceanic and atmospheric processes. This paper aims to use new isotopic records collected from snow and firn cores in conjunction with existing meteorological and oceanic datasets to determine changes at the climatic scale in the northern extent of the Antarctic Peninsula. In particular, a discernible effect of sea ice cover on local temperatures and the expression of climatic modes, especially the Southern Annular Mode (SAM), is demonstrated. In years with a large sea ice extension in winter (negative SAM anomaly), an inversion layer in the lower troposphere develops at the coastal zone. Therefore, an isotope-temperature relationship (δ-T) valid for all periods cannot be obtained, and instead the δ-T depends on the seasonal variability of oceanic conditions. Comparatively, transitional seasons (autumn and spring) have a consistent isotope-temperature gradient of +0.69 °C-1. As shown by firn core analysis, the near-surface temperature in the northern-most portion of the Antarctic Peninsula shows a decreasing trend (-0.33°Cyear-1) between 2008 and 2014. In addition, the deuterium excess (dexcess) is demonstrated to be a reliable indicator of seasonal oceanic conditions, and therefore suitable to improve a firn age model based on seasonal dexcess variability. The annual accumulation rate in this region is highly variable, ranging between 1060 and 2470kgm-2year-1 from 2008 to 2014. The combination of isotopic and meteorological data in areas where data exist is key to reconstruct climatic conditions with a high temporal resolution in polar regions where no direct observations exist. © 2018 Author(s).