Examinando por Autor "Mikolaitis Š."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Atomic data for the Gaia-ESO Survey(EDP Sciences, 2021-01-01) Heiter U.; Lind K.; Bergemann M.; Asplund M.; Mikolaitis Š.; Barklem P. S.; Masseron T.; De Laverny P.; Magrini L.; Edvardsson B.; Jönsson H.; Pickering J. C.; Ryde N.; Bayo Arán A.; Bensby T.; Casey A. R.; Feltzing S.; Jofré P.; Korn A. J.; Pancino E.; Damiani F.; Lanzafame A.; Lardo C.; Monaco L.; Morbidelli L.; Smiljanic R.; Worley C.; Zaggia S.; Randich S.; Gilmore G.F.Context. We describe the atomic and molecular data that were used for the abundance analyses of FGK-type stars carried out within the Gaia-ESO Public Spectroscopic Survey in the years 2012 to 2019. The Gaia-ESO Survey is one among several current and future stellar spectroscopic surveys producing abundances for Milky-Way stars on an industrial scale. Aims. We present an unprecedented effort to create a homogeneous common line list, which was used by several abundance analysis groups using different radiative transfer codes to calculate synthetic spectra and equivalent widths. The atomic data are accompanied by quality indicators and detailed references to the sources. The atomic and molecular data are made publicly available at the CDS. Methods. In general, experimental transition probabilities were preferred but theoretical values were also used. Astrophysical gf-values were avoided due to the model-dependence of such a procedure. For elements whose lines are significantly affected by a hyperfine structure or isotopic splitting, a concerted effort has been made to collate the necessary data for the individual line components. Synthetic stellar spectra calculated for the Sun and Arcturus were used to assess the blending properties of the lines. We also performed adetailed investigation of available data for line broadening due to collisions with neutral hydrogen atoms. Results. Among a subset of over 1300 lines of 35 elements in the wavelength ranges from 475 to 685 nm and from 850 to 895 nm, we identified about 200 lines of 24 species which have accurate gf-values and are free of blends in the spectra of the Sun and Arcturus. For the broadening due to collisions with neutral hydrogen, we recommend data based on Anstee-Barklem-O'Mara theory, where possible. We recommend avoiding lines of neutral species for which these are not available. Theoretical broadening data by R.L. Kurucz should be used for Sc II, Ti II, and Y II lines; additionally, for ionised rare-earth species, the Unsöld approximation with an enhancement factor of 1.5 for the line width can be used. Conclusions. The line list has proven to be a useful tool for abundance determinations based on the spectra obtained within the Gaia-ESO Survey, as well as other spectroscopic projects. Accuracies below 0.2 dex are regularly achieved, where part of the uncertainties are due to differences in the employed analysis methods. Desirable improvements in atomic data were identified for a number of species, most importantly Al I, S I, and Cr II, but also Na I, Si I, Ca II, and Ni I.Ítem The Gaia -ESO Survey: Exploring the complex nature and origins of the Galactic bulge populations(EDP Sciences, 2017-05) Rojas-Arriagada A.; Recio-Blanco A.; De Laverny P.; Mikolaitis Š.; Matteucci F.; Spitoni E.; Schultheis M.; Hayden M.; Hill V.; Zoccali M.; Minniti D.; Gonzalez O.A.; Gilmore G.; Randich S.; Feltzing S.; Alfaro E.J.; Babusiaux C.; Bensby T.; Bragaglia A.; Flaccomio E.; Koposov S.E.; Pancino E.; Bayo A.; Carraro G.; Casey A.R.; Costado M.T.; Damiani F.; Donati P.; Franciosini E.; Hourihane A.; Jofré P.; Lardo C.; Lewis J.; Lind K.; Magrini L.; Morbidelli L.; Sacco G.G.; Worley C.C.; Zaggia S.Context. As observational evidence steadily accumulates, the nature of the Galactic bulge has proven to be rather complex: the structural, kinematic, and chemical analyses often lead to contradictory conclusions. The nature of the metal-rich bulge - and especially of the metal-poor bulge - and their relation with other Galactic components, still need to be firmly defined on the basis of statistically significant high-quality data samples. Aims. We used the fourth internal data release of the Gaia-ESO survey to characterize the bulge metallicity distribution function (MDF), magnesium abundance, spatial distribution, and correlation of these properties with kinematics. Moreover, the homogeneous sampling of the different Galactic populations provided by the Gaia-ESO survey allowed us to perform a comparison between the bulge, thin disk, and thick disk sequences in the [Mg/Fe] vs. [Fe/H] plane in order to constrain the extent of their eventual chemical similarities. Methods. We obtained spectroscopic data for ∼2500 red clump stars in 11 bulge fields, sampling the area -10° ≥ l ≥ +8° and -10° ≥ b ≥ -4° from the fourth internal data release of the Gaia-ESO survey. A sample of ∼6300 disk stars was also selected for comparison. Spectrophotometric distances computed via isochrone fitting allowed us to define a sample of stars likely located in the bulge region. Results. From a Gaussian mixture models (GMM) analysis, the bulge MDF is confirmed to be bimodal across the whole sampled area. The relative ratio between the two modes of the MDF changes as a function of b, with metal-poor stars dominating at high latitudes. The metal-rich stars exhibit bar-like kinematics and display a bimodality in their magnitude distribution, a feature which is tightly associated with the X-shape bulge. They overlap with the metal-rich end of the thin disk sequence in the [Mg/Fe] vs. [Fe/H] plane. On the other hand, metal-poor bulge stars have a more isotropic hot kinematics and do not participate in the X-shape bulge. Their Mg enhancement level and general shape in the [Mg/Fe] vs. [Fe/H] plane is comparable to that of the thick disk sequence. The position at which [Mg/Fe] starts to decrease with [Fe/H], called the "knee", is observed in the metal-poor bulge at [Fe/H]knee = -0:37 ± 0:09, being 0.06 dex higher than that of the thick disk. Although this difference is inside the error bars, it suggest a higher star formation rate (SFR) for the bulge than for the thick disk. We estimate an upper limit for this difference of Δ[Fe/H]knee = 0:24 dex. Finally, we present a chemical evolution model that suitably fits the whole bulge sequence by assuming a fast (<1 Gyr) intense burst of stellar formation that takes place at early epochs. Conclusions.We associate metal-rich stars with the bar boxy/peanut bulge formed as the product of secular evolution of the early thin disk. On the other hand, the metal-poor subpopulation might be the product of an early prompt dissipative collapse dominated by massive stars. Nevertheless, our results do not allow us to firmly rule out the possibility that these stars come from the secular evolution of the early thick disk. This is the first time that an analysis of the bulge MDF and α-abundances has been performed in a large area on the basis of a homogeneous, fully spectroscopic analysis of high-resolution, high S/N data. © ESO 2017.