Examinando por Autor "Molina, F."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Calculation of kinetic parameters βeff and Λ with modified open source Monte Carlo code OpenMC(TD)(Korean Nuclear Society, 2022-03) Romero-Barrientos, J.; Damián, J.; Molina, F.; Zambra, M.; Aguilera, P.; López-Usquiano, F.; Parra, B.; Ruiz, A.This work presents the methodology used to expand the capabilities of the Monte Carlo code OpenMC for the calculation of reactor kinetic parameters: effective delayed neutron fraction βeff and neutron generation time Λ. The modified code, OpenMC(Time-Dependent) or OpenMC(TD), was then used to calculate the effective delayed neutron fraction by using the prompt method, while the neutron generation time was estimated using the pulsed method, fitting Λ to the decay of the neutron population. OpenMC(TD) is intended to serve as an alternative for the estimation of kinetic parameters when licensed codes are not available. The results obtained are compared to experimental data and MCNP calculated values for 18 benchmark configurations.Ítem Comparative Genomics Analysis of a New Exiguobacterium Strain from Salar de Huasco Reveals a Repertoire of Stress-Related Genes and Arsenic Resistance(FRONTIERS MEDIA, 2017-03) Castro-Severyn, J.; Remonsellez, F.; Valenzuela, S.L.; Salinas, C.; Fortt, J.; Aguilar, P.; Pardo-Esté, C.; Dorador, C.; Quatrini, R.; Molina, F.; Aguayo, D.; Castro-Nallar, E.; Saavedra, C.P.The Atacama Desert hosts diverse ecosystems including salt flats and shallow Andean lakes. Several heavy metals are found in the Atacama Desert, and microorganisms growing in this environment show varying levels of resistance/tolerance to copper, tellurium, and arsenic, among others. Herein, we report the genome sequence and comparative genomic analysis of a new Exiguobacterium strain, sp. SH31, isolated from an altiplanic shallow athalassohaline lake. Exiguobacterium sp. SH31 belongs to the phylogenetic Group II and its closest relative is Exiguobacterium sp. S17, isolated from the Argentinian Altiplano (95% average nucleotide identity). Strain SH31 encodes a wide repertoire of proteins required for cadmium, copper, mercury, tellurium, chromium, and arsenic resistance. Of the 34 Exiguobacterium genomes that were inspected, only isolates SH31 and S17 encode the arsenic efflux pump Acr3. Strain SH31 was able to grow in up to 10 mM arsenite and 100 mM arsenate, indicating that it is arsenic resistant. Further, expression of the ars operon and acr3 was strongly induced in response to both toxics, suggesting that the arsenic efflux pump Acr3 mediates arsenic resistance in Exiguobacterium sp. SH31.Ítem Genomic Variation and Arsenic Tolerance Emerged as Niche Specific Adaptations by Different Exiguobacterium Strains Isolated From the Extreme Salar de Huasco Environment in Chilean – Altiplano(Frontiers Media S.A., 2020-07) Castro-Severyn, J.; Pardo-Esté, C.; Mendez, K.N.; Morales, N.; Marquez, S.L.; Molina, F.; Remonsellez, F.; Castro-Nallar, E.; Saavedra, C.P.Polyextremophilic bacteria can thrive in environments with multiple stressors such as the Salar de Huasco (SH). Microbial communities in SH are exposed to low atmospheric pressure, high UV radiation, wide temperature ranges, salinity gradient and the presence of toxic compounds such as arsenic (As). In this work we focus on arsenic stress as one of the main adverse factors in SH and bacteria that belong to the Exiguobacterium genus due to their plasticity and ubiquity. Therefore, our aim was to shed light on the effect of niche conditions pressure (particularly arsenic), on the adaptation and divergence (at genotypic and phenotypic levels) of Exiguobacterium strains from five different SH sites. Also, to capture greater diversity in this genus, we use as outgroup five As(III) sensitive strains isolated from Easter Island (Chile) and The Great Salt Lake (United States). For this, samples were obtained from five different SH sites under an arsenic gradient (9 to 321 mg/kg: sediment) and isolated and sequenced the genomes of 14 Exiguobacterium strains, which had different arsenic tolerance levels. Then, we used comparative genomic analysis to assess the genomic divergence of these strains and their association with phenotypic differences such as arsenic tolerance levels and the ability to resist poly-stress. Phylogenetic analysis showed that SH strains share a common ancestor. Consequently, populations were separated and structured in different SH microenvironments, giving rise to multiple coexisting lineages. Hence, this genotypic variability is also evidenced by the COG (Clusters of Orthologous Groups) composition and the size of their accessory genomes. Interestingly, these observations correlate with physiological traits such as growth patterns, gene expression, and enzyme activity related to arsenic response and/or tolerance. Therefore, Exiguobacterium strains from SH are adapted to physiologically overcome the contrasting environmental conditions, like the arsenic present in their habitat. © Copyright © 2020 Castro-Severyn, Pardo-Esté, Mendez, Morales, Marquez, Molina, Remonsellez, Castro-Nallar and Saavedra.