Examinando por Autor "Molina-Hidalgo, Cristina"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Active gains in brain using exercise during aging (AGUEDA): protocol for a randomized controlled trial(Frontiers Media S.A., 2023) Solis-Urra, Patricio; Molina-Hidalgo, Cristina; García-Rivero, Yolanda; Costa-Rodriguez, Claudia; Mora-Gonzalez, Jose; Fernandez-Gamez, Beatriz; Olvera-Rojas, Marcos; Coca-Pulido, Andrea; Toval, Angel; Bellón, Darío; Sclafani, Alessandro; Martín-Fuentes, Isabel; Triviño-Ibañez, Eva María; de Teresa, Carlos; Huang, Haiqing; Grove, George; Hillman, Charles H.; Kramer, Arthur F.; Catena, Andrés; Ortega, Francisco B.; Gómez-Río, Manuel; Erickson, Kirk I.; Esteban-Cornejo, IreneAlzheimer’s disease is currently the leading cause of dementia and one of the most expensive, lethal and severe diseases worldwide. Age-related decline in executive function is widespread and plays a key role in subsequent dementia risk. Physical exercise has been proposed as one of the leading non-pharmaceutical approaches to improve executive function and ameliorate cognitive decline. This single-site, two-arm, single-blinded, randomized controlled trial (RCT) will include 90 cognitively normal older adults, aged 65–80 years old. Participants will be randomized to a 24-week resistance exercise program (3 sessions/week, 60 min/session, n = 45), or a wait-list control group (n = 45) which will be asked to maintain their usual lifestyle. All study outcomes will be assessed at baseline and at 24-weeks after the exercise program, with a subset of selected outcomes assessed at 12-weeks. The primary outcome will be indicated by the change in an executive function composite score assessed with a comprehensive neuropsychological battery and the National Institutes of Health Toolbox Cognition Battery. Secondary outcomes will include changes in brain structure and function and amyloid deposition, other cognitive outcomes, and changes in molecular biomarkers assessed in blood, saliva, and fecal samples, physical function, muscular strength, body composition, mental health, and psychosocial parameters. We expect that the resistance exercise program will have positive effects on executive function and related brain structure and function, and will help to understand the molecular, structural, functional, and psychosocial mechanisms involved. Copyright © 2023 Solis-Urra, Molina-Hidalgo, García-Rivero, Costa-Rodriguez, Mora-Gonzalez, Fernandez-Gamez, Olvera-Rojas, Coca-Pulido, Toval, Bellón, Sclafani, Martín-Fuentes, Triviño-Ibañez, de Teresa, Huang, Grove, Hillman, Kramer, Catena, Ortega, Gómez-Río, Erickson and Esteban-Cornejo.Ítem Physical Performance and Amyloid-β in Humans: A Systematic Review and Meta-Analysis of Observational Studies(IOS Press BV, 2023-12-06) Solis-Urra, Patricio; Rodriguez-Ayllon, María; Álvarez-Ortega, Miriam; Molina-Hidalgo, Cristina; Molina-Garcia, Pablo; Arroyo-Ávila, Cristina; García-Hermoso, Antonio; Collins, Audrey M.; Jain, Shivangi; Gispert, Juan Domingo; Liu-Ambrose, Teresa; Ortega, Francisco B.; Erickson, Kirk I.; Esteban-Cornejo, IreneBackground: Accumulation of amyloid-β (Aβ) plaques is one of the main features of Alzheimer's disease (AD). Physical performance has been related to dementia risk and Aβ, and it has been hypothesized as one of the mechanisms leading to greater accumulation of Aβ. Yet, no evidence synthesis has been performed in humans. Objective: To investigate the association of physical performance with Aβ in humans, including Aβ accumulation on brain, and Aβ abnormalities measured in cerebrospinal fluid (CSF) and blood. Methods: A systematic review with multilevel meta-analysis was performed from inception to June 16th, 2022. Studies were eligible if they examined the association of physical performance with Aβ levels, including the measure of physical performance as a predictor and the measure of Aβ as an outcome in humans. Results: 7 articles including 2,619 participants were included in the meta-analysis. The results showed that physical performance was not associated with accumulation of Aβ in the brain (ES = 0.01; 95% CI -0.21 to 0.24; I2 = 69.9%), in the CSF (ES = -0.28; 95% CI -0.98 to 0.41; I2 = 91.0%) or in the blood (ES = -0.19; 95% CI -0.61 to 0.24; I2 = 99.75%). Significant heterogeneity was found across the results , which posed challenges in arriving at consistent conclusions; and the limited number of studies hindered the opportunity to conduct a moderation analysis. Conclusions: The association between physical performance and Aβ is inconclusive. This uncertainly arises from the limited number of studies, study design limitations, and heterogeneity of measurement approaches. More studies are needed to determine whether physical performance is related to Aβ levels in humans.