Examinando por Autor "Mora, J. Rodrigo"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Imprinting of CCR9 on CD4 T cells requires IL-4 signaling on mesenteric lymph node dendritic cells(American Association of Immunologists, 2008-05-15) Elgueta, Raul; Sepulveda, Fernando E.; Vilches, Felipe; Vargas, Leonardo; Mora, J. Rodrigo; Bono, Maria Rosa; Rosemblatt, MarioIt has recently been shown that IL-4 can educate dendritic cells (DC) to differentially affect T cell effector activity. In this study, we show that IL-4 can also act upon DC to instruct naive T cells to express the gut-associated homing receptor CCR9. Thus, effector T cells generated after coculture with mesenteric lymph node (MLN)-DC show a higher expression of CCR9 when activated in the presence of IL-4. In contrast, IL-4 had no effect on CCR9 expression when naive T cells were polyclonally activated in the absence of MLN-DC, suggesting that the effect of IL-4 on CCR9 expression passed through DC. Indeed, T cells activated by MLN-DC from IL-4R alpha(-/-) mice showed a much lower CCR9 expression and a greatly reduced migration to the small intestine than T cells activated by wild-type MLN-DC even in-the presence of IL-4. Consistent with the finding that the vitamin A metabolite retinoic acid (RA) induces gut-homing molecules on T cells, we further demonstrate that IL-4 up-regulated retinaldehyde dehydrogenase 2 mRNA on MLN-DC, a critical enzyme involved in the synthesis of RA. Moreover, LE135, a RA receptor antagonist, blocked the increased expression of CCR9 driven by IL-4-treated MLN-DC. Thus, besides the direct effect of RA on T cell gut tropism, our results show that the induction of a gut-homing phenotype on CD4(+) T cells is also influenced by the effect of IL-4 on gut-associated DC.Ítem Vitamin A Impairs the Reprogramming of Tregs into IL-17-Producing Cells during Intestinal Inflammation(Hindawi Publishing Corporation, 2015) Tejón, Gabriela; Manríquez, Valeria; De Calisto, Jaime; Flores-Santibáñez, Felipe; Hidalgo, Yessia; Crisóstomo, Natalia; Fernández, Dominique; Sauma, Daniela; Mora, J. Rodrigo; Bono, Mariá R.; Rosemblatt, MarioMaintaining the identity of Foxp3+ regulatory T cells (Tregs) is critical for controlling immune responses in the gut, where an imbalance between Tregs and T effector cells has been linked to inflammatory bowel disease. Accumulating evidence suggests that Tregs can convert into Th17 cells and acquire an inflammatory phenotype. In this study, we used an adoptive transfer model of Ag-specific T cells to study the contribution of different factors to the reprogramming of in vitro-generated Treg cells (iTreg) into IL-17-producing cells in a mouse model of gut inflammation in vivo. Our results show that intestinal inflammation induces the reprogramming of iTreg cells into IL-17-producing cells and that vitamin A restrains reprogramming in the gut. We also demonstrate that the presence of IL-2 during the in vitro generation of iTreg cells confers resistance to Th17 conversion but that IL-2 and retinoic acid (RA) cooperate to maintain Foxp3 expression following stimulation under Th17-polarizing conditions. Additionally, although IL-2 and RA differentially regulate the expression of different Treg cell suppressive markers, Treg cells generated under different polarizing conditions present similar suppressive capacity. © 2015 Gabriela Tejón et al.