Examinando por Autor "Moreno, Adrián A."
Mostrando 1 - 7 de 7
Resultados por página
Opciones de ordenación
Ítem A Modeled High-Density Fed-Batch Culture Improves Biomass Growth and β-Glucans Accumulation in Microchloropsis salina(Plants, 2022-12) Ocaranza, Darío; Balic, Iván; Bruna, Tamara; Moreno, Ignacio; Díaz, Oscar; Moreno, Adrián A.; Caro, NelsonAlgae and microalgae are used as a source of different biomolecules, such as lipids and carbohydrates. Among carbohydrates, polysaccharides, such as β-glucans, are important for their application as antioxidants, antisepsis, and immunomodulators. In the present work, the β-glucans production potential of Microchloropsis salina was assessed using two different culture conditions: a high-density batch and a modeled high-density fed-batch. From the biochemical parameters determined from these two cultures conditions, it was possible to establish that the modeled high density fed-batch culture improves the biomass growth. It was possible to obtain a biomass pro ductivity equal to 8.00 × 10−2 ± 2.00 × 10−3 g/(L × day), while the batch condition reached 5.13 × 10−2 ± 4.00 × 10−4 g/(L × day). The same phenomenon was observed when analyzing the β-glucans accumulation, reaching volumetric productivity equal to 5.96 × 10−3 ± 2.00 × 10−4 g of product/(L × day) against the 4.10 × 10−3 ± 2.00 × 10−4 g of product/(L × day) obtained in batch conditions. These data establish a baseline condition to optimize and significantly increase β-glucan productivity, as well as biomass, adding a new and productive source of this polymer, and integrating its use in potential applications in the human and animal nutraceutical industry.Ítem A Modeled High-Density Fed-Batch Culture Improves Biomass Growth and β-Glucans Accumulation in Microchloropsis salina(MDPI, 2022-12) Ocaranza, Darío; Balic, Iván; Bruna, Tamara; Moreno, Ignacio; Díaz, Oscar; Moreno, Adrián A.; Caro, NelsonAlgae and microalgae are used as a source of different biomolecules, such as lipids and carbohydrates. Among carbohydrates, polysaccharides, such as β-glucans, are important for their application as antioxidants, antisepsis, and immunomodulators. In the present work, the β-glucans production potential of Microchloropsis salina was assessed using two different culture conditions: a high-density batch and a modeled high-density fed-batch. From the biochemical parameters determined from these two cultures conditions, it was possible to establish that the modeled high-density fed-batch culture improves the biomass growth. It was possible to obtain a biomass productivity equal to 8.00 × 10−2 ± 2.00 × 10−3 g/(L × day), while the batch condition reached 5.13 × 10−2 ± 4.00 × 10−4 g/(L × day). The same phenomenon was observed when analyzing the β-glucans accumulation, reaching volumetric productivity equal to 5.96 × 10−3 ± 2.00 × 10−4 g of product/(L × day) against the 4.10 × 10−3 ± 2.00 × 10−4 g of product/(L × day) obtained in batch conditions. These data establish a baseline condition to optimize and significantly increase β-glucan productivity, as well as biomass, adding a new and productive source of this polymer, and integrating its use in potential applications in the human and animal nutraceutical industry. © 2022 by the authors.Ítem Antimicrobial and Antibiofilm Activity of Chitosan Nanoparticles Against Staphylococcus aureus Strains Isolated from Bovine Mastitis Milk(Multidisciplinary Digital Publishing Institute (MDPI), 2025-02) Godoy, Carlos Alarcón; Balic, Iván; Moreno, Adrián A.; Diaz, Oscar; Arenas Colarte, Carla; Bruna Larenas, Tamara; Gamboa, Alexander; Caro Fuentes, NelsonBovine mastitis (BM), a prevalent and economically burdensome bacterial infection affecting dairy cattle, poses a significant challenge to the dairy industry. The traditional approach to combating BM, relying heavily on antibiotics, faces growing concerns due to the increasing antibiotic resistance exhibited by pathogens. The objective of this study was to evaluate and determine the antimicrobial and anti-biofilm potential of chitosan nanoparticles (NQo) on S. aureus strains isolated from milk samples obtained from dairy areas in southern Chile from cows diagnosed with BM. Methods: NQo were synthesized using the ionotropic gelation method and thoroughly characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Results: The NQo exhibit a robust positive charge (Z-potential of +55.4 ± 2.5 mV) and an exceptionally small size (20.3 ± 3.2 nm). This unique combination of properties makes NQo particularly well-suited for targeting and interacting with bacterial pathogens. To assess the effectiveness of NQo against BM, we conducted a series of experiments using a Staphylococcus aureus strain isolated from milk samples of cows diagnosed with BM in southern Chile. NQo demonstrated a remarkable ability to inhibit bacterial proliferation and effectively modulate biofilm formation in the S. aureus strains. Furthermore, the performance of NQo in comparison to established antibiotics like ampicillin and gentamicin strongly suggests that these nanoparticles hold immense potential as an attractive alternative for the control, prevention, and/or treatment of BM. Conclusions: NQo exhibit both antimicrobial and antibiofilm activity against a clinically relevant BM pathogen. Further investigations are necessary to develop a hydrogel formulation optimized for effective delivery to the target diseased tissue.Ítem Bioactive Lichen Secondary Metabolites and Their Presence in Species from Chile(MDPI, 2023-07) Poulsen-Silva, Erick; Gordillo-Fuenzalida, Felipe; Atala, Cristian; Moreno, Adrián A.; Otero, María CarolinaLichens are symbiotic organisms composed of at least one fungal and one algal species. They are found in different environments around the world, even in the poles and deserts. Some species can withstand extreme abiotic conditions, including radiation and the vacuum of space. Their chemistry is mainly due to the fungal metabolism and the production of several secondary metabolites with biological activity, which have been isolated due to an increasing interest from the pharmaceutical community. However, beyond the experimental data, little is known about their mechanisms of action and the potential pharmaceutical use of these kinds of molecules, especially the ones isolated from lesser-known species and/or lesser-studied countries. The main objective of this review is to analyze the bibliographical data of the biological activity of secondary metabolites from lichens, identifying the possible mechanisms of action and lichen species from Chile. We carried out a bibliographic revision of different scientific articles in order to collect all necessary information on the biological activity of the metabolites of these lichen species. For this, validated databases were used. We found the most recent reports where in vitro and in vivo studies have demonstrated the biological properties of these metabolites. The biological activity, namely anticancer, antioxidant, and anti-inflammatory activity, of 26 secondary metabolites are described, as well as their reported molecular mechanisms. The most notable metabolites found in this review were usnic acid, atranorin, protolichesterinic acid, and lobaric acid. Usnic acid was the most investigated metabolite, in addition to undergoing toxicological and pharmacological studies, where a hepatotoxicity effect was reported due to uncoupling oxidative phosphorylation. Additionally, no major studies have been made to validate the pharmacological application of these metabolites, and few advancements have been made in their artificial growth in bioreactors. Despite the described biological activities, there is little support to consider these metabolites in pharmaceutical formulations or to evaluate them in clinical trials. Nevertheless, it is important to carry out further studies regarding their possible human health effects. These lichen secondary metabolites present a promising research opportunity to find new pharmaceutical molecules due to their bioactive properties.Ítem Bioactive Lichen Secondary Metabolites and Their Presence in Species from Chile(Multidisciplinary Digital Publishing Institute (MDPI), 2023-07) Poulsen-Silva, Erick; Gordillo-Fuenzalida, Felipe; Atala, Cristian; Moreno, Adrián A.; Otero, María CarolinaLichens are symbiotic organisms composed of at least one fungal and one algal species. They are found in different environments around the world, even in the poles and deserts. Some species can withstand extreme abiotic conditions, including radiation and the vacuum of space. Their chemistry is mainly due to the fungal metabolism and the production of several secondary metabolites with biological activity, which have been isolated due to an increasing interest from the pharmaceutical community. However, beyond the experimental data, little is known about their mechanisms of action and the potential pharmaceutical use of these kinds of molecules, especially the ones isolated from lesser-known species and/or lesser-studied countries. The main objective of this review is to analyze the bibliographical data of the biological activity of secondary metabolites from lichens, identifying the possible mechanisms of action and lichen species from Chile. We carried out a bibliographic revision of different scientific articles in order to collect all necessary information on the biological activity of the metabolites of these lichen species. For this, validated databases were used. We found the most recent reports where in vitro and in vivo studies have demonstrated the biological properties of these metabolites. The biological activity, namely anticancer, antioxidant, and anti-inflammatory activity, of 26 secondary metabolites are described, as well as their reported molecular mechanisms. The most notable metabolites found in this review were usnic acid, atranorin, protolichesterinic acid, and lobaric acid. Usnic acid was the most investigated metabolite, in addition to undergoing toxicological and pharmacological studies, where a hepatotoxicity effect was reported due to uncoupling oxidative phosphorylation. Additionally, no major studies have been made to validate the pharmacological application of these metabolites, and few advancements have been made in their artificial growth in bioreactors. Despite the described biological activities, there is little support to consider these metabolites in pharmaceutical formulations or to evaluate them in clinical trials. Nevertheless, it is important to carry out further studies regarding their possible human health effects. These lichen secondary metabolites present a promising research opportunity to find new pharmaceutical molecules due to their bioactive properties. © 2023 by the authors.Ítem Metabolite Profiling Reveals the Effect of Cold Storage on Primary Metabolism in Nectarine Varieties with Contrasting Mealiness(MDPI, 2023-02) Olmedo, Patricio; Zepeda, Baltasar; Delgado-Rioseco, Joaquín; Leiva, Carol; Moreno, Adrián A.; Sagredo, Karen; Blanco-Herrera, Francisca; Pedreschi, Romina; Infante, Rodrigo; Meneses, Claudio; Campos-Vargas, ReinaldoChilling injury is a physiological disorder caused by cold storage in peaches and nectarines. The main symptom of chilling injury is mealiness/wooliness, described as a lack of juice in fruit flesh. In this work, we studied two nectarine varieties (Andes Nec-2 and Andes Nec-3) with contrasting susceptibility to mealiness after cold storage. A non-targeted metabolomic analysis was conducted by GC-MS to understand if changes in metabolite abundance are associated with nectarine mealiness induced by cold storage. Multivariate analyses indicated that in unripe nectarines, cold storage promoted a higher accumulation of amino acids in both varieties. Interestingly, for ripe nectarines, cold storage induced an accumulation of fewer amino acids in both varieties and showed an increased abundance of sugars and organic acids. A pathway reconstruction of primary metabolism revealed that in ripe nectarines, cold storage disrupted metabolite abundance in sugar metabolism and the TCA cycle, leading to a differential accumulation of amino acids, organic acids, and sugars in mealy and juicy nectarines. © 2023 by the authorsÍtem The UDP-glucose: Glycoprotein glucosyltransferase (UGGT), a key enzyme in ER quality control, plays a significant role in plant growth as well as biotic and abiotic stress in Arabidopsis thaliana(BioMed Central Ltd., 2015-06) Blanco-Herrera, Francisca; Moreno, Adrián A.; Tapia, Rodrigo; Reyes, Francisca; Araya, Macarena; D'Alessio, Cecilia; Parodi, Armando; Orellana, ArielBackground: UDP-glucose: glycoprotein glucosyltransferase (UGGT) is a key player in the quality control mechanism (ER-QC) that newly synthesized glycoproteins undergo in the ER. It has been shown that the UGGT Arabidopsis orthologue is involved in ER-QC; however, its role in plant physiology remains unclear. Results: Here, we show that two mutant alleles in the At1g71220 locus have none or reduced UGGT activity. In wild type plants, the AtUGGT transcript levels increased upon activation of the unfolded protein response (UPR). Interestingly, mutants in AtUGGT exhibited an endogenous up-regulation of genes that are UPR targets. In addition, mutants in AtUGGT showed a 30 % reduction in the incorporation of UDP-Glucose into the ER suggesting that this enzyme drives the uptake of this substrate for the CNX/CRT cycle. Plants deficient in UGGT exhibited a delayed growth rate of the primary root and rosette as well as an alteration in the number of leaves. These mutants are more sensitive to pathogen attack as well as heat, salt, and UPR-inducing stressors. Additionally, the plants showed impairment in the establishment of systemic acquired resistance (SAR). Conclusions: These results show that a lack of UGGT activity alters plant vegetative development and impairs the response to several abiotic and biotic stresses. Moreover, our results uncover an unexpected role of UGGT in the incorporation of UDP-Glucose into the ER lumen in Arabidopsis thaliana. © Blanco-Herrera et al.