Examinando por Autor "Moreno, Ignacio"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem A Modeled High-Density Fed-Batch Culture Improves Biomass Growth and β-Glucans Accumulation in Microchloropsis salina(MDPI, 2022-12) Ocaranza, Darío; Balic, Iván; Bruna, Tamara; Moreno, Ignacio; Díaz, Oscar; Moreno, Adrián A.; Caro, NelsonAlgae and microalgae are used as a source of different biomolecules, such as lipids and carbohydrates. Among carbohydrates, polysaccharides, such as β-glucans, are important for their application as antioxidants, antisepsis, and immunomodulators. In the present work, the β-glucans production potential of Microchloropsis salina was assessed using two different culture conditions: a high-density batch and a modeled high-density fed-batch. From the biochemical parameters determined from these two cultures conditions, it was possible to establish that the modeled high-density fed-batch culture improves the biomass growth. It was possible to obtain a biomass productivity equal to 8.00 × 10−2 ± 2.00 × 10−3 g/(L × day), while the batch condition reached 5.13 × 10−2 ± 4.00 × 10−4 g/(L × day). The same phenomenon was observed when analyzing the β-glucans accumulation, reaching volumetric productivity equal to 5.96 × 10−3 ± 2.00 × 10−4 g of product/(L × day) against the 4.10 × 10−3 ± 2.00 × 10−4 g of product/(L × day) obtained in batch conditions. These data establish a baseline condition to optimize and significantly increase β-glucan productivity, as well as biomass, adding a new and productive source of this polymer, and integrating its use in potential applications in the human and animal nutraceutical industry. © 2022 by the authors.Ítem A Modeled High-Density Fed-Batch Culture Improves Biomass Growth and β-Glucans Accumulation in Microchloropsis salina(Plants, 2022-12) Ocaranza, Darío; Balic, Iván; Bruna, Tamara; Moreno, Ignacio; Díaz, Oscar; Moreno, Adrián A.; Caro, NelsonAlgae and microalgae are used as a source of different biomolecules, such as lipids and carbohydrates. Among carbohydrates, polysaccharides, such as β-glucans, are important for their application as antioxidants, antisepsis, and immunomodulators. In the present work, the β-glucans production potential of Microchloropsis salina was assessed using two different culture conditions: a high-density batch and a modeled high-density fed-batch. From the biochemical parameters determined from these two cultures conditions, it was possible to establish that the modeled high density fed-batch culture improves the biomass growth. It was possible to obtain a biomass pro ductivity equal to 8.00 × 10−2 ± 2.00 × 10−3 g/(L × day), while the batch condition reached 5.13 × 10−2 ± 4.00 × 10−4 g/(L × day). The same phenomenon was observed when analyzing the β-glucans accumulation, reaching volumetric productivity equal to 5.96 × 10−3 ± 2.00 × 10−4 g of product/(L × day) against the 4.10 × 10−3 ± 2.00 × 10−4 g of product/(L × day) obtained in batch conditions. These data establish a baseline condition to optimize and significantly increase β-glucan productivity, as well as biomass, adding a new and productive source of this polymer, and integrating its use in potential applications in the human and animal nutraceutical industry.Ítem ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis(Nature Research, 2012) Ding, Zhaojun; Wang, Bangjun; Moreno, Ignacio; Duplá Ková, Nikoleta; Simon, Sibu; Carraro, Nicola; Reemmer, Jesica; Pě Nčí K, Aleš; Chen, Xu; Tejos, Ricardo; SkÅpa, Petr; Pollmann, Stephan; Mravec, Jozef; Petrá Š Ek, Jan; ZaÅimalova, Eva; Honys, David; Rolčí K, Jakub; Murphy, Angus; Orellana, Ariel; Geisler, Markus; Friml, JiříAuxin is a key coordinative signal required for many aspects of plant development and its levels are controlled by auxin metabolism and intercellular auxin transport. Here we find that a member of PIN auxin transporter family, PIN8 is expressed in male gametophyte of Arabidopsis thaliana and has a crucial role in pollen development and functionality. Ectopic expression in sporophytic tissues establishes a role of PIN8 in regulating auxin homoeostasis and metabolism. PIN8 co-localizes with PIN5 to the endoplasmic reticulum (ER) where it acts as an auxin transporter. Genetic analyses reveal an antagonistic action of PIN5 and PIN8 in the regulation of intracellular auxin homoeostasis and gametophyte as well as sporophyte development. Our results reveal a role of the auxin transport in male gametophyte development in which the distinct actions of ER-localized PIN transporters regulate cellular auxin homoeostasis and maintain the auxin levels optimal for pollen development and pollen tube growth. © 2012 Macmillan Publishers Limited. All rights reserved.Ítem PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis(Blackwell Publishing Ltd, 2016-07) Sibu, Simon; Skůpa, Petr; Viaene, Tom; Zwiewka, Marta; Tejos, Ricardo; Klíma, Petr; Čarná, Mária; Rolčík, Jakub; De Rycke, Riet; Moreno, Ignacio; Dobrev, Petre I.; Orellana, Ariel; Zažímalová, Eva; Friml, JiříSummary Plant development mediated by the phytohormone auxin depends on tightly controlled cellular auxin levels at its target tissue that are largely established by intercellular and intracellular auxin transport mediated by PIN auxin transporters. Among the eight members of the Arabidopsis PIN family, PIN6 is the least characterized candidate. In this study we generated functional, fluorescent protein-tagged PIN6 proteins and performed comprehensive analysis of their subcellular localization and also performed a detailed functional characterization of PIN6 and its developmental roles. The localization study of PIN6 revealed a dual localization at the plasma membrane (PM) and endoplasmic reticulum (ER). Transport and metabolic profiling assays in cultured cells and Arabidopsis strongly suggest that PIN6 mediates both auxin transport across the PM and intracellular auxin homeostasis, including the regulation of free auxin and auxin conjugates levels. As evidenced by the loss- and gain-of-function analysis, the complex function of PIN6 in auxin transport and homeostasis is required for auxin distribution during lateral and adventitious root organogenesis and for progression of these developmental processes. These results illustrate a unique position of PIN6 within the family of PIN auxin transporters and further add complexity to the developmentally crucial process of auxin transport.