Examinando por Autor "Nantais, Julie"
Mostrando 1 - 10 de 10
Resultados por página
Opciones de ordenación
Ítem Evidence for the universality of properties of red-sequence galaxies in x-ray- and red-sequence-selected clusters at z ∼ 1(Institute of Physics Publishing, 2015-10) Foltz, R.; Rettura, A.; Wilson, G.; Van Der Burg, R.F.J.; Muzzin, A.; Lidman, C.; Demarco, R.; Nantais, Julie; Degroot, A.; Yee, H.We study the slope, intercept, and scatter of the color-magnitude and color-mass relations for a sample of 10 infrared red-sequence-selected clusters at z ∼ 1. The quiescent galaxies in these clusters formed the bulk of their stars above z 3 with an age spread Δt 1 Gyr. We compare UVJ color-color and spectroscopic-based galaxy selection techniques, and find a 15% difference in the galaxy populations classified as quiescent by these methods. We compare the color-magnitude relations from our red-sequence selected sample with X-ray- and photometric-redshift-selected cluster samples of similar mass and redshift. Within uncertainties, we are unable to detect any difference in the ages and star formation histories of quiescent cluster members in clusters selected by different methods, suggesting that the dominant quenching mechanism is insensitive to cluster baryon partitioning at z ∼ 1. © 2015. The American Astronomical Society. All rights reserved..Ítem The GOGREEN Survey: Evidence of an Excess of Quiescent Disks in Clusters at 1.0(IOP Publishing Ltd, 2021-10-10) Chan, Jeffrey C. C.; Wilson, Gillian; Balogh, Michael; Rudnick, Gregory; van der Burg, Remco F. J.; Muzzin, Adam; Webb, Kristi A.; Biviano, Andrea; Cerulo, Pierluigi; Cooper, M. C.; De Lucia, Gabriella; Demarco, Ricardo; Forrest, Ben; Jablonka, Pascale; Lidman, Chris; McGee, Sean L.; Nantais, Julie; Old, Lyndsay; Pintos-Castro, Irene; Poggianti, Bianca; Reeves, Andrew M. M.; Vulcani, Benedetta; Yee, Howard K. C.; Zaritsky, DennisWe present the results of the measured shapes of 832 galaxies in 11 galaxy clusters at 1.0 < z < 1.4 from the GOGREEN survey. We measure the axis ratio (q), the ratio of the minor to the major axis, of the cluster galaxies from near-infrared Hubble Space Telescope imaging using Sersic profile fitting and compare them with a field sample. We find that the median q of both star-forming and quiescent galaxies in clusters increases with stellar mass, similar to the field. Comparing the axis ratio distributions between clusters and the field in four mass bins, the distributions for star-forming galaxies in clusters are consistent with those in the field. Conversely, the distributions for quiescent galaxies in the two environments are distinct, most remarkably in where clusters show a flatter distribution, with an excess at low q. Modelling the distribution with oblate and triaxial components, we find that the cluster and field sample difference is consistent with an excess of flattened oblate quiescent galaxies in clusters. The oblate population contribution drops at high masses, resulting in a narrower q distribution in the massive population than at lower masses. Using a simple accretion model, we show that the observed q distributions and quenched fractions are consistent with a scenario where no morphological transformation occurs for the environmentally quenched population in the two intermediate-mass bins. Our results suggest that environmental quenching mechanism(s) likely produce a population that has a different morphological mix than those resulting from the dominant quenching mechanism in the field.Ítem GOGREEN: A critical assessment of environmental trends in cosmological hydrodynamical simulations at z ≈ 1(Oxford University Press, 2023-01-01) Kukstas, Egidijus; Balogh, Michael L.; McCarthy, Ian G.; Bahé, Yannick M.; De Lucia, Gabriella; Jablonka, Pascale; Vulcani, Benedetta; Baxter, Devontae C.; Biviano, Andrea; Cerulo, Pierluigi; Chan, Jeffrey C.; Cooper, M. C.; Demarco, Ricardo; Finoguenov, Alexis; Font, Andreea S.; Lidman, Chris; Marchioni, Justin; McGee, Sean; Muzzin, Adam; Nantais, Julie; Old, Lyndsay; Pintos-Castro, Irene; Poggianti, Bianca; Reeves, Andrew M. M.; Rudnick, Gregory; Sarron, Florian; van der Burg, Remco; Webb, Kristi; Wilson, Gillian; Yee, Howard K. C.; Zaritsk, DennisRecent observations have shown that the environmental quenching of galaxies at z ∼1 is qualitatively different to that in the local Universe. However, the physical origin of these differences has not yet been elucidated. In addition, while low-redshift comparisons between observed environmental trends and the predictions of cosmological hydrodynamical simulations are now routine, there have been relatively few comparisons at higher redshifts to date. Here we confront three state-of-the-art suites of simulations (BAHAMAS+MACSIS, EAGLE+Hydrangea, IllustrisTNG) with state-of-the-art observations of the field and cluster environments from the COSMOS/UltraVISTA and GOGREEN surveys, respectively, at z ∼1 to assess the realism of the simulations and gain insight into the evolution of environmental quenching. We show that while the simulations generally reproduce the stellar content and the stellar mass functions of quiescent and star-forming galaxies in the field, all the simulations struggle to capture the observed quenching of satellites in the cluster environment, in that they are overly efficient at quenching low-mass satellites. Furthermore, two of the suites do not sufficiently quench the highest mass galaxies in clusters, perhaps a result of insufficient feedback from AGN. The origin of the discrepancy at low stellar masses (M* ≲ 1010 M⊙), which is present in all the simulations in spite of large differences in resolution, feedback implementations, and hydrodynamical solvers, is unclear. The next generation of simulations, which will push to significantly higher resolution and also include explicit modelling of the cold interstellar medium, may help us to shed light on the low-mass tension.Ítem GOGREEN: A critical assessment of environmental trends in cosmological hydrodynamical simulations at z ≈ 1(Oxford University Press, 2023-01) Kukstas, Egidijus; Balogh, Michael L.; Mccarthy, Ian G.; Bahe, Yannick M.; De Lucia, Gabriella; Jablonka, Pascale; Vulcani, Benedetta; Baxter, Devontae C.; Biviano, Andrea; Cerulo, Pierluigi; Chan, Jeffrey C.; Cooper M.C.; Demarco, Ricardo; Finoguenov, Alexis; Font, Andreea S.; Lidman, Chris; Marchioni, Justin; Mcgee, Sean; Muzzin, Adam; Nantais, Julie; Old, Lyndsay; Pintos-Castro, Irene; Poggianti, Bianca; Reeves, Andrew M. M.; Rudnick, Gregory; Sarron, Florian; Van Der Burg, Remco; Webb, Kristi; Wilson, Gillian; Yee, Howard K. C.; Zaritsky, DennisRecent observations have shown that the environmental quenching of galaxies at z ∼1 is qualitatively different to that in the local Universe. However, the physical origin of these differences has not yet been elucidated. In addition, while low-redshift comparisons between observed environmental trends and the predictions of cosmological hydrodynamical simulations are now routine, there have been relatively few comparisons at higher redshifts to date. Here we confront three state-of-the-art suites of simulations (BAHAMAS+MACSIS, EAGLE+Hydrangea, IllustrisTNG) with state-of-the-art observations of the field and cluster environments from the COSMOS/UltraVISTA and GOGREEN surveys, respectively, at z ∼1 to assess the realism of the simulations and gain insight into the evolution of environmental quenching. We show that while the simulations generally reproduce the stellar content and the stellar mass functions of quiescent and star-forming galaxies in the field, all the simulations struggle to capture the observed quenching of satellites in the cluster environment, in that they are overly efficient at quenching low-mass satellites. Furthermore, two of the suites do not sufficiently quench the highest mass galaxies in clusters, perhaps a result of insufficient feedback from AGN. The origin of the discrepancy at low stellar masses (M* ≲ 1010 M⊙), which is present in all the simulations in spite of large differences in resolution, feedback implementations, and hydrodynamical solvers, is unclear. The next generation of simulations, which will push to significantly higher resolution and also include explicit modelling of the cold interstellar medium, may help us to shed light on the low-mass tension. © 2022 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.Ítem Ionized gas kinematics of cluster AGN at z ∼0.8 with KMOS(Oxford University Press, 2021-09-01) Paillalef, Marcela G.; Flores, Hector; Demarco, Ricardo; Rettura, Alessando; Jaffé, Yara; Lidman, Chris; Nantais, Julie; Puech, Mathieu; Rosati, PieroWe present an integral field spectroscopy study of two active galactic nuclei (AGN) in the galaxy cluster RXJ0152-137 at z = 0.84. We have combined integrated and 3D spectra with HST images to perform a complete morpho-kinematical analysis of each galaxy. For G557, we detect narrow and broad H α and [N ii] emission. The broad H α component is redshifted by v ∼939 km s-1 concerning the narrow component. The kinematics analysis and VLT/FORS2 data indicate that G557 presents evidence of radial outflows. For G300, it was possible to detect only the broad H α emission. The spectral properties of both galaxies are equivalent to those of local AGN. We also compare the results obtained for each AGN with their location within the cluster. We found a possible connection of the environment with the properties inferred for each of them, and the possible interaction of G557 with an unconfirmed neighboring galaxy, for which a bridge-like structure is observed in the HST images. This work shows evidence of how the same type of AGN can show differences in their spectroscopic properties depending on the region of the cluster in which they develop, which is important to understand how the environment affects AGN and, consequently, the evolution of galaxies. © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Ítem MAGAZ3NE: High Stellar Velocity Dispersions for Ultramassive Quiescent Galaxies at z ≳ 3* * The spectra presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.(Institute of Physics, 2022-10-01) Forrest, Ben; Wilson, Gillian; Muzzin, Adam; Marchesini, Danilo; Cooper, M.C.; Cemile Marsan, Z.; Annunziatella, Marianna; McConachie, Ian; Zaidi, Kumail; Gomez, Percy; Urbano Stawinski, Stephanie M.; Chang, Wenjun; Lucia, Gabriella de; Barbera, Francesco La; Lubin, Lori; Nantais, Julie; Peña, Theodore; Saracco, Paolo; Surace, Jason; Stefanon, MauroIn this work, we publish stellar velocity dispersions, sizes, and dynamical masses for eight ultramassive galaxies (UMGs; log ( M * / M ⊙ ) > 11), z ≳ 3) from the Massive Ancient Galaxies At z > 3 NEar-infrared (MAGAZ3NE) Survey, more than doubling the number of such galaxies with velocity dispersion measurements at this epoch. Using the deep Keck/MOSFIRE and Keck/NIRES spectroscopy of these objects in the H and K bandpasses, we obtain large velocity dispersions of ∼400 km s−1 for most of the objects, which are some of the highest stellar velocity dispersions measured and ∼40% larger than those measured for galaxies of similar mass at z ∼ 1.7. The sizes of these objects are also smaller by a factor of 1.5-3 compared to this same z ∼ 1.7 sample. We combine these large velocity dispersions and small sizes to obtain dynamical masses. The dynamical masses are similar to the stellar masses of these galaxies, consistent with a Chabrier initial mass function (IMF). Considered alongside previous studies of massive quiescent galaxies across 0.2 < z < 4.0, there is evidence for an evolution in the relation between the dynamical mass-stellar mass ratio and velocity dispersion as a function of redshift. This implies an IMF with fewer low-mass stars (e.g., Chabrier IMF) for massive quiescent galaxies at higher redshifts in conflict with the bottom-heavy IMF (e.g., Salpeter IMF) found in their likely z ∼ 0 descendants, though a number of alternative explanations such as a different dynamical structure or significant rotation are not ruled out. Similar to data at lower redshifts, we see evidence for an increase of IMF normalization with velocity dispersion, though the z ≳ 3 trend is steeper than that for z ∼ 0.2 early-type galaxies and offset to lower dynamical-to-stellar mass ratios. © 2022. The Author(s). Published by the American Astronomical Society.Ítem The GOGREEN Survey: A deep stellar mass function of cluster galaxies at 1.0 < z < 1.4 and the complex nature of satellite quenching(EDP Sciences, 2020-06-01) van der Burg, Remco F. J.; Rudnick, Gregory; Balogh, Michael L.; Muzzin, Adam; Lidman, Chris; Old, Lyndsay J.; Shipley, Heath; Gilbank, David; McGee, Sean; Biviano, Andrea; Cerulo, Pierluigi; Chan, Jeffrey C. C.; Cooper, Michael; De Lucia, Gabriella; Demarco, Ricardo; Forrest, Ben; Gwyn, Stephen; Jablonka, Pascale; Kukstas, Egidijus; Marchesini, Danilo; Nantais, Julie; Noble, Allison; Pintos-Castro, Irene; Poggianti, Bianca; Reeves, Andrew M. M.; Stefanon, Mauro; Vulcani, Benedetta; Webb, Kristi; Wilson, Gillian; Yee, Howard; Zaritsky, DennisWe study the stellar mass functions (SMFs) of star-forming and quiescent galaxies in 11 galaxy clusters at 1.0 < z < 1.4 drawn from the Gemini Observations of Galaxies in Rich Early ENvironments (GOGREEN) survey. Based on more than 500 h of Gemini/GMOS spectroscopy and deep multi-band photometry taken with a range of observatories, we probe the SMFs down to a stellar mass limit of 109.7 M (109.5 M for star-forming galaxies). At this early epoch, the fraction of quiescent galaxies is already highly elevated in the clusters compared to the field at the same redshift. The quenched fraction excess (QFE) represents the fraction of galaxies that would be star-forming in the field but are quenched due to their environment. The QFE is strongly mass dependent, and increases from ∼30% at M? = 109.7 M to ∼80% at M? = 1011.0 M . Nonetheless, the shapes of the SMFs of the two individual galaxy types, star-forming and quiescent galaxies, are identical between cluster and field to high statistical precision. Nevertheless, along with the different quiescent fractions, the total galaxy SMF is also environmentally dependent, with a relative deficit of low-mass galaxies in the clusters. These results are in stark contrast with findings in the local Universe, and therefore require a substantially different quenching mode to operate at early times. We discuss these results in light of several popular quenching models.Ítem The Massive Ancient Galaxies at z > 3 NEar-infrared (MAGAZ3NE) Survey: Confirmation of Extremely Rapid Star Formation and Quenching Timescales for Massive Galaxies in the Early Universe(IOP Publishing Ltd, 2020-11-01) Forrest, Ben; Cemile Marsan Z.; Annunziatella, Marianna; Wilson, Gillian; Muzzin, Adam; Marchesini, Danilo; Cooper M.C.; Chan, Jeffrey C.C.; McConachie, Ian; Gomez, Percy; Kado-Fong, Erin; Barbera, Francesco La; Lange-Vagle, Daniel; Nantais, Julie; Nonino, Mario; Saracco, Paolo; Stefanon, Mauro; van der Burg, Remco F.J.We present near-infrared spectroscopic confirmations of a sample of 16 photometrically selected galaxies with stellar Keck/MOSFIRE masses log(as M*part M*of ) > the 11 Massive at redshift Ancient z > 3 Galaxies from the At XMM-VIDEO z > 3 NEar-infrared and COSMOS-UltraVISTA (MAGAZ3NE) survey. fields Eight using of the ultramassive galaxies (UMGs) have specific star formation rates (sSFR) < 0.03 Gyr−1, with negligible emission lines. Another seven UMGs show emission lines consistent with active galactic nuclei and/or star formation, while only one UMG has sSFR > 1 Gyr−1. Model star formation histories of these galaxies describe systems that formed the majority of their stars in vigorous bursts of several hundred megayear duration around 4 < z < 6 during which hundreds to thousands of solar masses were formed per year. These formation ages of <1 Gyr prior to observation are consistent with ages derived from measurements of Dn(4000) and EW0(Hδ). Rapid quenching followed these bursty star-forming periods, generally occurring less than 350 Myr before observation, resulting in post-starburst SEDs and spectra for half the sample. The rapid formation timescales are consistent with the extreme star formation rates observed in 4 < z < 7 dusty starbursts observed with ALMA, suggesting that such dusty galaxies are progenitors of these UMGs. While such formation histories have been suggested in previous studies, the large sample introduced here presents the most compelling evidence yet that vigorous star formation followed by rapid quenching is almost certainly the norm for high-mass galaxies in the early universe. The UMGs presented here were selected to be brighter than Ks = 21.7, raising the intriguing possibility that even (fainter) older quiescent UMGs could exist at this epoch.Ítem The One-hundred-deg2 DECam Imaging in Narrowbands (ODIN): Survey Design and Science Goals(Institute of Physics, 2024-02-11) Lee, Kyoung-Soo; Gawiser, Eric; Park, Changbom; Yang, Yujin; Valdes, Francisco; Lang, Dustin; Ramakrishnan, Vandana; Moon, Byeongha; Firestone, Nicole; Appleby, Stephen; Artale, Maria Celeste; Andrews, Moira; Bauer, Franz; Benda, Barbara; Broussard, Adam; Chiang, Yi-Kuan; Ciardullo, Robin; Dey, Arjun; Farooq, Rameen; Gronwall, Caryl; Guaita, Lucia; Huang, Yun; Hwang, Ho Seong; Sang Hyeok; Jeong, Woong-Seob; Karthikeyan, Shreya; Kim, Hwihyun; Kim, Seongjae; Kumar, Ankit; Nagaraj, Gautam R.; Nantais, Julie; Padilla, Nelson; Park, Jaehong; Pope, Alexandra; Popescu, Roxana; Schlegel, David; Seo, Eunsuk; Singh, Akriti; Song, Hyunmi; Troncoso, Paulina; Vivas, A. Katherina; Zabludoff, Ann; Zenteno, AlfredoWe describe the survey design and science goals for One-hundred-deg2 DECam Imaging in Narrowbands (ODIN), a NOIRLab survey using the Dark Energy Camera (DECam) to obtain deep (AB ∼ 25.7) narrowband images over an unprecedented area of sky. The three custom-built narrowband filters, N419, N501, and N673, have central wavelengths of 419, 501, and 673 nm and respective FWHM of 7.5, 7.6, and 10.0 nm, corresponding to Lyα at z = 2.4, 3.1, and 4.5 and cosmic times of 2.8, 2.1, and 1.4 Gyr, respectively. When combined with even deeper, public broadband data from the Hyper Suprime-Cam, DECam, and in the future, the Legacy Survey of Space and Time, the ODIN narrowband images will enable the selection of over 100,000 Lyα-emitting (LAE) galaxies at these epochs. ODIN-selected LAEs will identify protoclusters as galaxy overdensities, and the deep narrowband images enable detection of highly extended Lyα blobs (LABs). Primary science goals include measuring the clustering strength and dark matter halo connection of LAEs, LABs, and protoclusters, and their respective relationship to filaments in the cosmic web. The three epochs allow for the redshift evolution of these properties to be determined during the period known as Cosmic Noon, where star formation was at its peak. The narrowband filter wavelengths are designed to enable interloper rejection and further scientific studies by revealing [O ii] and [O iii] at z = 0.34, Lyα and He ii 1640 at z = 3.1, and Lyman continuum plus Lyα at z = 4.5. Ancillary science includes similar studies of the lower-redshift emission-line galaxy samples and investigations of nearby star-forming galaxies resolved into numerous [O iii] and [S ii] emitting regions.Ítem The stellar mass function of quiescent galaxies in 2 < z < 2.5 protoclusters(Oxford University Press, 2024-01) Edward, Adit H.; Balogh, Michael L.; Bahe, Yannick M.; Cooper M.C.; Hatch, Nina A.; Marchioni, Justin; Muzzin, Adam; Noble, Allison; Rudnick, Gregory H; Vulcani, Benedetta; Wilson, Gillian; De Lucia, Gabriella; Demarco, Ricardo; Forrest, Ben; Hirschmann, Michaela; Castignani, Gianluca; Cerulo, Pierluigi; Finn, Rose A.; Hewitt, Guillaume; Jablonka, Pascale; Kodama, Tadayuki; Maurogordato, Sophie; Nantais, Julie; Xie, LizhiWe present an analysis of the galaxy stellar mass function (SMF) of 14 known protoclusters between 2.0 < z < 2.5 in the COSMOS field, down to a mass limit of 109.5 M. We use existing photometric redshifts with a statistical background subtraction, and consider star-forming and quiescent galaxies identified from (NUV - r) and (r - J) colours separately. Our fiducial sample includes galaxies within 1 Mpc of the cluster centres. The shape of the protocluster SMF of star-forming galaxies is indistinguishable from that of the general field at this redshift. Quiescent galaxies, however, show a flatter SMF than in the field, with an upturn at low mass, though this is only significant at ∼2σ. There is no strong evidence for a dominant population of quiescent galaxies at any mass, with a fraction <15 per cent at 1σ confidence for galaxies with log M∗/M < 10.5. We compare our results with a sample of galaxy groups at 1 < z < 1.5, and demonstrate that a significant amount of environmental quenching must take place between these epochs, increasing the relative abundance of high-mass () quiescent galaxies by a factor 2. However, we find that at lower masses (), no additional environmental quenching is required. © 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.