Examinando por Autor "Nardini, M."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Afterglow rebrightenings as a signature of a long-lasting central engine activity?: The emblematic case of GRB 100814A(2014-02) Nardini, M.; Elliott, J.; Filgas, R.; Schady, P.; Greiner, J.; Krühler, T.; Klose, S.; Afonso, P.; Kann, D.A.; Nicuesa Guelbenzu, A.; Olivares E., F.; Rau, A.; Rossi, A.; Sudilovsky, V.; Schmidl, S.Context. In the past few years the number of well-sampled optical to near-infrared (NIR) light curves of long gamma-ray bursts (GRBs) has greatly increased, particularly due to simultaneous multi-band imagers such as GROND. Combining these densely sam pled ground-based data sets with the Swift UVOT and XRT space observations unveils a much more complex afterglow evolution than what was predicted by the most commonly invoked theoretical models. GRB 100814A represents a remarkable example of these interesting well-sampled events, showing a prominent late-time rebrightening in the optical to NIR bands and a complex spectral evolution. This represents a unique laboratory to test the different afterglow emission models. Aims. Here we study the nature of the complex afterglow emission of GRB 100814A in the framework of different theoretical models. Moreover, we compare the late-time chromatic rebrightening with those observed in other well-sampled long GRBs. Methods. We analysed the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared Detector (GROND) at the 2.2 m MPG/ESO telescope together with the X-ray and UV data detected by the instruments onboard the Swift observatory. The broad-band afterglow evolution, achieved by constructing multi-instrument light curves and spectral energy distributions, is discussed in the framework of different theoretical models. Results. We find that the standard models that describe the broad-band afterglow emission within the external shock scenario fail to describe the complex evolution of GRB 100814A, and therefore more complex scenarios must be invoked. The analysis of the very well sampled broad-band light curve of GRB 100814A allowed us to deduce that models invoking late-time activity of the central engine in the observed afterglow emission are the preferred ones for all the different observed features. This late-time activity most likely has the form of a delayed reactivation of the ejecta emission process. However, a more detailed modelling of the radiative mechanisms associated with these scenarios is necessary to arrive at a firm conclusion on the nature of the optical rebrightenings that so often are detected in long GRBs.Ítem Multiwavelength analysis of three supernovae associated with gamma-ray bursts observed by GROND(EDP Sciences, 2015-05) Olivares, E.F.; Greiner, J.; Schady, P.; Klose, S.; Krühler, T.; Rau, A.; Savaglio, S.; Kann, D.A.; Pignata, G.; Elliott, J.; Rossi, A.; Nardini, M.; Afonso, P.M.J.; Filgas, R.; Nicuesa Guelbenzu, A.; Schmidl, S.; Sudilovsky, V.Context. After the discovery of the first connection between γ-ray bursts (GRBs) and supernovae (SNe) almost two decades ago, tens of SN-like rebrightenings have been discovered and about seven solid associations have been spectroscopically confirmed to date. Aims. We determine the luminosity, evolution, and origin of three SN rebrightenings in GRB afterglow light curves at z ∼ 0.5 along with accurate determinations of the host-galaxy extinction. We estimate physical parameters of the SN explosions, such as synthesised 56Ni mass, ejecta mass, and kinetic energy. Methods. We employ GROND optical/NIR data and Swift X-ray/UV data to estimate the host-galaxy extinction by modelling the afterglow spectral energy distribution, to determine the SN luminosity and evolution, and to construct quasi-bolometric light curves. The latter are corrected for the contribution of the NIR-bands using data available in the literature and black-body fits. We employ Arnett's analytic approach to obtain the physical parameters of the explosion. Results. The SNe 2008hw, 2009nz, and 2010ma observed by GROND exhibit 0.80, 1.15, and 1.78 times the optical (r′-band) luminosity of SN 1998bw, respectively. While SN 2009nz exhibits an evolution similar to SN 1998bw, SNe 2008hw and 2010ma show earlier peak times. The quasi-bolometric light curves (340-2200 nm) confirm the large luminosity of SN 2010ma (1.4 × 10 43 erg s-1), while SNe 2008hw and 2009nz reached a peak luminosity closer to that of SN 1998bw. The modelling indicates in 56 Ni masses of around 0.4-0.5 MO. Conclusions. By means of a very comprehensive data set, we found that the luminosity and the 56Ni mass of SNe 2008hw, 2009nz, and 2010ma resembles those of other known GRB-associated SNe. These findings strengthens previous claims of GRB-SNe being brighter than stripped-envelope SNe unaccompanied by GRBs. © ESO, 2015.