Examinando por Autor "Navarrete, P."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Evaluating the capacity of human gut microorganisms to colonize the zebrafish larvae (Danio rerio)(Frontiers Media, 2018-05) Valenzuela, M.-J.; Caruffo, M.; Herrera, Y.; Medina, D.A.; Coronado, M.; Feijóo, C.G.; Muñoz, S.; Garrido, D.; Troncoso, M.; Figueroa, G.; Toro, M.; Reyes-Jara, A.; Magne, F.; Navarrete, P.In this study we evaluated if zebrafish larvae can be colonized by human gut microorganisms. We tested two strategies: (1) through transplantation of a human fecal microbiota and (2) by successively transplanting aerotolerant anaerobic microorganisms, similar to the colonization in the human intestine during early life. We used conventionally raised zebrafish larvae harboring their own aerobic microbiota to improve the colonization of anaerobic microorganisms. The results showed with the fecal transplant, that some members of the human gut microbiota were transferred to larvae. Bacillus, Roseburia, Prevotella, Oscillospira, one unclassified genus of the family Ruminococcaceae and Enterobacteriaceae were detected in 3 days post fertilization (dpf) larvae; however only Bacillus persisted to 7 dpf. Successive inoculation of Lactobacillus, Bifidobacterium and Clostridioides did not improve their colonization, compared to individual inoculation of each bacterial species. Interestingly, the sporulating bacteria Bacillus clausii and Clostridioides difficile were the most persistent microorganisms. Their endospores persisted at least 5 days after inoculating 3 dpf larvae. However, when 5 dpf larvae were inoculated, the proportion of vegetative cells in larvae increased, revealing proliferation of the inoculated bacteria and better colonization of the host. In conclusion, these results suggest that it is feasible to colonize zebrafish larvae with some human bacteria, such as C. difficile and Bacillus and open an interesting area to study interactions between these microorganisms and the host. © 2018 Valenzuela, Caruffo, Herrera, Medina, Coronado, Feijóo, Muñoz, Garrido, Troncoso, Figueroa, Toro, Reyes-Jara, Magne and Navarrete.Ítem Intestinal Inflammation Induced by Soybean Meal Ingestion Increases Intestinal Permeability and Neutrophil Turnover Independently of Microbiota in Zebrafish(Frontiers Media S.A., 2020-07) Solis, C.J.; Hamilton, M.K.; Caruffo, M.; Garcia-Lopez, J.P.; Navarrete, P.; Guillemin, K.; Feijoo, C.G.Intestinal inflammation is a condition shared by several intestinal chronic diseases, such as Crohn's disease and ulcerative colitis, with severely detrimental consequences in the long run. Current mammalian models have considerably increased understanding of this pathological condition, highlighting the fact that, in most of the cases, it is a highly complex and multifactorial problem and difficult to deal with. Thus, there is an increasingly evident need for alternative animal models that could offer complementary approaches that have not been exploited in rodents, thereby contributing to a different view on the disease. Here, we report the effects of a soybean meal–induced intestinal inflammation model on intestinal integrity and function as well as on neutrophil recruitment and microbiota composition in zebrafish. We find that the induced intestinal inflammation process is accompanied by an increase in epithelial permeability in addition to changes in the mRNA levels of different tight junction proteins. Conversely, there was no evidence of damage of epithelial cells nor an increase in their proliferation. Of note, our results show that this intestinal inflammatory model is induced independently of the presence of microbiota. On the other hand, this inflammatory process affects intestinal physiology by decreasing protein absorption, increasing neutrophil replacement, and altering microbiota composition with a decrease in the diversity of cultivable bacteria. © Copyright © 2020 Solis, Hamilton, Caruffo, Garcia-Lopez, Navarrete, Guillemin and Feijoo.