Examinando por Autor "Navarro Molina, C."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem A population of eruptive variable protostars in VVV(OXFORD UNIV PRESS, 2016-11) Contreras Peña, C.; Lucas, P.W.; Minniti, D.; Kurtev, R.; Stimson, W.; Navarro Molina, C.; Borissova, J.; Kumar, M.S.N.; Thompson, M.A.; Gledhill, T.; Terzi, R.; Froebrich, D.; Caratti o Garatti, A.We present the discovery of 816 high-amplitude infrared variable stars (ΔKs > 1 mag) in 119 deg2 of the Galactic mid-plane covered by the VISTA Variables in the Via Lactea (VVV) survey. Almost all are new discoveries and about 50 per cent are young stellar objects (YSOs). This provides further evidence that YSOs are the commonest high-amplitude infrared variable stars in the Galactic plane. In the 2010-2014 time series of likely YSOs, we find that the amplitude of variability increases towards younger evolutionary classes (class I and flatspectrum sources) except on short time-scales (< 25 d) where this trend is reversed. Dividing the likely YSOs by light-curve morphology, we find 106 with eruptive light curves, 45 dippers, 39 faders, 24 eclipsing binaries, 65 long-term periodic variables (P > 100 d) and 162 shortterm variables. Eruptive YSOs and faders tend to have the highest amplitudes and eruptive systems have the reddest spectral energy distribution (SEDs). Follow-up spectroscopy in a companion paper verifies high accretion rates in the eruptive systems. Variable extinction is disfavoured by the two epochs of colour data. These discoveries increase the number of eruptive variable YSOs by a factor of at least 5, most being at earlier stages of evolution than the known FUor and EXor types. We find that eruptive variability is at least an order of magnitude more common in class I YSOs than class II YSOs. Typical outburst durations are 1-4 yr, between those of EXors and FUors. They occur in 3-6 per cent of class I YSOs over a 4 yr time spanÍtem An Automated Tool to Detect Variable Sources in the Vista Variables in the Vía Láctea Survey: The VVV Variables (V4) Catalog of Tiles d001 and d002(Institute of Physics Publishing, 2018-09) Medina, N.; Borissova, J.; Bayo, A.; Kurtev, R.; Navarro Molina, C.; Kuhn, M.; Kumar, N.; Lucas, P.W.; Catelan, M.; Minniti, D.; Smith, L.C.Time-varying phenomena are one of the most substantial sources of astrophysical information, and their study has led to many fundamental discoveries in modern astronomy. We have developed an automated tool to search for and analyze variable sources in the near-infrared K s band using the data from the VISTA Variables in the Vía Láctea (VVV) ESO Public Large Survey. This process relies on the characterization of variable sources using different variability indices calculated from time series generated with point-spread function (PSF) photometry of sources under analysis. In particular, we used two main indices, the total amplitude and the eta index η, to identify variable sources. Once the variable objects are identified, periods are determined with generalized Lomb-Scargle periodograms and the information potential metric. Variability classes are assigned according to a compromise between comparisons with VVV templates and the period of the variability. The automated tool is applied on VVV tiles d001 and d002 and led to the discovery of 200 variable sources. We detected 70 irregular variable sources and 130 periodic ones. In addition, nine open-cluster candidates projected in the region are analyzed, and the infrared variable candidates found around these clusters are further scrutinized by cross-matching their locations against emission star candidates from VPHAS+ survey Hα color cuts. © 2018. The American Astronomical Society. All rights reserved.Ítem Infrared spectroscopy of eruptive variable protostars from VVV(OXFORD UNIV PRESS, 2017-03) Contreras Peña, C.; Lucas, P.W.; Kurtev, R.; Minniti, D.; Caratti o Garatti, A.; Marocco, F.; Thompson, M.A.; Froebrich, D.; Kumar, M.; Stimson, W.; Navarro Molina, C.; Borissova, J.; Gledhill, T.; Terzi, R.In a companion work (Paper I), we detected a large population of highly variable Young Stellar Objects (YSOs) in the Vista Variables in the Via Lactea (VVV) survey, typically with class I or flat spectrum spectral energy distributions and diverse light-curve types. Here we present infrared spectra (0.9-2.5 mu m) of 37 of these variables, many of them observed in a bright state. The spectra confirm that 15/18 sources with eruptive light curves have signatures of a high accretion rate, either showing EXor-like emission features (Delta v = 2 CO, Br gamma.) and/or FUor-like features (Delta v = 2 CO and H2O strongly in absorption). Similar features were seen in some long-term periodic YSOs and faders but not in dippers or short-term variables. The sample includes some dusty Mira variables (typically distinguished by smooth Mira-like light curves), two cataclysmic variables and a carbon star. In total, we have added 19 new objects to the broad class of eruptive variable YSOs with episodic accretion. Eruptive variable YSOs in our sample that were observed at bright states show higher accretion luminosities than the rest of the sample. Most of the eruptive variables differ from the established FUor and EXor subclasses, showing intermediate outburst durations and a mixture of their spectroscopic characteristics. This is in line with a small number of other recent discoveries. Since these previously atypical objects are now the majority amongst embedded members of the class, we propose a new classification for them as MNors. This term (pronounced emnor) follows V1647 Ori, the illuminating star of McNeil's Nebula.