Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Navas-Fonseca, Alex"

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Distributed Predictive Secondary Control for Imbalance Sharing in AC Microgrids
    (Institute of Electrical and Electronics Engineers Inc., 2022-01-01) Navas-Fonseca, Alex; Burgos-Mellado, Claudio; Gomez, Juan S.; Donoso, Felipe; Tarisciotti, Luca; Saez, Doris; Cardenas, Roberto; Sumner, Mark
    This paper proposes a distributed predictive secondary control strategy to share imbalance in three-phase, three-wire isolated AC Microgrids. The control is based on a novel approach where the imbalance sharing among distributed generators is controlled through the control of single-phase reactive power. The main characteristic of the proposed methodology is the inclusion of an objective function and dynamic models as constraints in the formulation. The controller relies on local measurements and information from neighboring distributed generators, and it performs the desired control action based on a constrained cost function minimization. The proposed distributed model predictive control scheme has several advantages over solutions based on virtual impedance loops or based on the inclusion of extra power converters for managing single-phase reactive power among distributed generators. In fact, with the proposed technique the sharing of imbalance is performed directly in terms of single-phase reactive power and without the need for adding extra power converters into the microgrid. Contrary to almost all reported works in this area, the proposed approach enables the control of various microgrid parameters within predefined bands, providing a more flexible control system. Extensive simulation and Hardware in the Loop studies verify the performance of the proposed control scheme. Moreover, the controller's scalability and a comparison study, in terms of performance, with the virtual impedance approach were carried out. © 2010-2012 IEEE.
  • No hay miniatura disponible
    Ítem
    Multi-Mode Master-Slave Control Approach for More Modular and Reconfigurable Hybrid Microgrids
    (Institute of Electrical and Electronics Engineers Inc., 2023) D'Antonio, Diego S.; Lopez-Santos, Oswaldo; Navas-Fonseca, Alex; Flores-Bahamonde, Freddy; Perez, Marcelo A.
    The increasing demand for energy and the high penetration of distributed energy resources require the evolution of current electrical systems toward smarter and more reliable electric grids. In this regard, microgrids (MG) play a vital role in integrating distributed energy resources (DER), loads, and storage systems. However, microgrid architectures lack versatility and flexibility in terms of control, limiting their expansion. This paper presents a multi-mode master-slave control approach to increase the flexibility of DC-coupled hybrid microgrids. The proposed control scheme allows optimal coordination of the power units connected to each bus. Coordination among buses is also achieved through interlinking and interfacing converters; thus, ensuring the reliable operation of the microgrid. Moreover, this approach considers the possible expansion of the capacity of the MG, providing more degrees of freedom for optimization and control. An MG with two DC distribution buses connected to the main grid is selected as a case study to develop dynamic modeling and establish a control architecture. The advantages of the proposed control are discussed via MATLAB simulation results considering the operation of the MG in several scenarios. © 2013 IEEE.
  • Cargando...
    Miniatura
    Ítem
    Predictive Control for Current Distortion Mitigation in Mining Power Grids
    (MDPI, 2023-03) Gómez, Juan S.; Navas-Fonseca, Alex; Flores-Bahamonde, Freddy; Tarisciotti, Luca; Garcia, Cristian; Nuñez, Felipe; Rodriguez, Jose; Cipriano, Aldo Z.
    Current distortion is a critical issue of power quality because the low frequency harmonics injected by adjustable speed drives increase heating losses in transmission lines and induce torque flickering in induction motors, which are widely used in mining facilities. Although classical active filtering techniques mitigate the oscillatory components of imaginary power, they may not be sufficient to clean the sensitive nodes of undesirable power components, some of which are related to real power. However, the usage of power electronic converters for distributed generation and energy storage, allows the integration of complementary power quality control objectives in electrical systems, by using the same facilities required for active power transferring. This paper proposes a predictive control-based scheme for mitigating the current distortion in the coupling node between utility grid and the mining facility power system. Instead of the classical approach of active filtering, this task is included as a secondary level objective control referred into the microgrid control hierarchy. Hardware-in-the-Loop simulation results showed that the proposed scheme is capable of bounding the current distortion, according to IEEE standard 1547, for both individual harmonics and the total rated current distortion, through inequality constraints of the optimization problem.