Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Neira, Favio d"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Predicting High-magnification Events in Microlensed Quasars in the Era of LSST Using Recurrent Neural Networks
    (Institute of Physics, 2025-03) Fagin, Joshua; Paic, Eric; Neira, Favio d; Best, Henry; Anguita, Timo; Millon, Martin; O’Dowd, Matthew; Sluse, Dominique; Vernardos, Georgios
    Upcoming wide-field surveys, such as the Rubin Observatory’s Legacy Survey of Space and Time (LSST), will monitor thousands of strongly lensed quasars over a 10 yr period. Many of these monitored quasars will undergo high-magnification events (HMEs) through microlensing, as the accretion disk crosses a caustic—places of infinite magnification. Microlensing allows us to map the inner regions of the accretion disk as it crosses a caustic, even at large cosmological distances. The observational cadences of LSST are not ideal for probing the inner regions of the accretion disk, so there is a need to predict HMEs as early as possible, to trigger high-cadence multiband or spectroscopic follow-up observations. Here, we simulate a diverse and realistic sample of 10 yr quasar microlensing light curves to train a recurrent neural network to predict HMEs before they occur, by classifying the locations of the peaks at each time step. This is the first deep-learning approach for predicting HMEs. We give estimates of how well we expect to predict HME peaks during LSST and benchmark how our metrics change with different cadence strategies. With LSST-like observations, we can predict approximately 55% of HME peaks, corresponding to tens to hundreds per year and a false-positive rate of around 20% compared to the total number of HMEs. Our network can be continuously applied throughout the LSST survey, providing crucial alerts for optimizing follow-up resources