Browsing by Author "Nitschelm, Christian"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item APOGEE chemical abundance patterns of the massive milky way satellites(IOP Publishing Ltd, 2021-12) Hasselquist, Sten; Hayes, Christian R; Lian, Jianhui; Weinberg, David H.; Zasowski, Gail; Horta, Danny; Beaton, Rachael; Feuillet, Diane K.; Garro, Elisa R.; Gallart, Carme; Smith, Verne V.; Holtzman, Jon A.; Minniti, Dante; Lacerna, Ivan; Shetrone, Matthew; Jönsson, Henrik; Cioni, Maria-Rosa L.; Fillingham, Sean P.; Cunha, Katia; O'Connell, Robert; Fernández-Trincado, José G.; Munoz, Ricardo R.; Schiavon, Ricardo; Almeida, Andres; Anguiano, Borja; Beers, Timothy C.; Bizyaev, Dmitry; Brownstein, Joel R.; Cohen, Roger E.; Frinchaboy, Peter; García-Hernández, D.A.; Geisler, Doug; Lane, Richard R.; Majewski, Steven R; Nidever, David L.; Nitschelm, Christian; Povick, Joshua; Price-Whelan, Adrian; Roman-Lopes, Alexandre; Rosado, Margarita; Sobeck, Jennifer; Stringfellow, Guy; Valenzuela, Octavio; Villanova, Sandro; Vincenzo, FiorenzoThe SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully disrupted Gaia Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [α/Fe]–[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the Magellanic Clouds (MCs) observed by Nidever et al. in the α-element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3–4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier (∼5–7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution.Item How many components? Quantifying the complexity of the metallicity distribution in the Milky Way bulge with APOGEE(Oxford University Press, 2020-11-01) Rojas-Arriagada, Alvaro; Zasowski, Gail; Schultheis, Mathias; Zoccali, Manuela; Hasselquist, Sten; Chiappini, Cristina; Cohen, Roger E.; Cunha, Katia; Fernández-Trincado, José G.; Fragkoudi, Francesca; Garcia-Hernández, D. A.; Geisler, Doug; Gran, Felipe; Lian, Jianhui; Majewski, Steven; Minniti, Dante; Monachesi, Antonela; Nitschelm, Christian; Queiroz, Anna B. A.We use data of ~13 000 stars from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment survey to study the shape of the bulge metallicity distribution function (MDF) within the region |l| = 11° and |b| = 13°, and spatially constrained to RGC = 3.5 kpc. We apply Gaussian mixture modelling and non-negative matrix factorization decomposition techniques to identify the optimal number and the properties of MDF components. We find that the shape and spatial variations of the MDF (at [Fe/H]=-1 dex) are well represented as a smoothly varying contribution of three overlapping components located at [Fe/H] = +0.32, -0.17, and -0.66 dex. The bimodal MDF found in previous studies is in agreement with our trimodal assessment once the limitations in sample size and individual measurement errors are taken into account. The shape of the MDF and its correlations with kinematics reveal different spatial distributions and kinematical structure for the three components co-existing in the bulge region. We confirm the consensus physical interpretation of metal-rich stars as associated with the secularly evolved disc into a boxy/peanut X-shape bar. On the other hand, metal-intermediate stars could be the product of in-situ formation at high redshift in a gas-rich environment characterized by violent and fast star formation. This interpretation would help us to link a present-day structure with those observed in formation in the centre of high-redshift galaxies. Finally, metal-poor stars may correspond to the metal-rich tail of the population sampled at lower metallicity from the study of RR Lyrae stars. Conversely, they could be associated with the metal-poor tail of the early thick disc.Item The chemical characterization of halo substructure in the Milky Way based on APOGEE(Oxford University Press, 2023-04) Horta, Danny; Schiavon, Ricardo P.; Mackereth, J. Ted; Weinberg, David H.; Hasselquist, Sten; Feuillet, Diane; O’Connell, Robert W.; Anguiano, Borja; Allende-Prieto, Carlos; Beaton, Rachael L.; Bizyaev, Dmitry; Cunha, Katia; Geisler, Doug; García-Hernández D.A.; Holtzman, Jon; Jönsson, Henrik; Lane, Richard R.; Majewski, Steve R.; Mészáros, Szabolcs; Minniti, Dante; Nitschelm, Christian; Shetrone, Matthew; Smith, Verne V.; Zasowski, GailGalactic haloes in a Λ-CDM universe are predicted to host today a swarm of debris resulting from cannibalized dwarf galaxies. The chemodynamical information recorded in their stellar populations helps elucidate their nature, constraining the assembly history of the Galaxy. Using data from APOGEE and Gaia, we examine the chemical properties of various halo substructures, considering elements that sample various nucleosynthetic pathways. The systems studied are Heracles, Gaia-Enceladus/Sausage (GES), the Helmi stream, Sequoia, Thamnos, Aleph, LMS-1, Arjuna, I’itoi, Nyx, Icarus, and Pontus. Abundance patterns of all substructures are cross-compared in a statistically robust fashion. Our main findings include: (i) the chemical properties of most substructures studied match qualitatively those of dwarf Milky Way satellites, such as the Sagittarius dSph. Exceptions are Nyx and Aleph, which are chemically similar to disc stars, implying that these substructures were likely formed in situ; (ii) Heracles differs chemically from in situ populations such as Aurora and its inner halo counterparts in a statistically significant way. The differences suggest that the star formation rate was lower in Heracles than in the early Milky Way; (iii) the chemistry of Arjuna, LMS-1, and I’itoi is indistinguishable from that of GES, suggesting a possible common origin; (iv) all three Sequoia samples studied are qualitatively similar. However, only two of those samples present chemistry that is consistent with GES in a statistically significant fashion; (v) the abundance patterns of the Helmi stream and Thamnos are different from all other halo substructures. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Item The Open Cluster Chemical Abundances and Mapping Survey. VI. Galactic Chemical Gradient Analysis from APOGEE DR17(American Astronomical Society, 2022-09-01) Myers, Natalie; Donor, John; Spoo, Taylor; Frinchaboy, Peter M.; Cunha, Katia; Price Whelan, Adrian M.; Majewski, Steven R.; Beaton, Rachael L.; Zasowski, Gail; O'connell, Julia; Ray, Amy E.; Bizyaev, Dmitry; Chiappini, Cristina; García Hernández, D.A.; Geisler, Doug; Jönsson, Henrik; Lane, Richard R.; Longa Peña, Penélope; Minchev, Ivan; Minniti, Dante; Nitschelm, Christian; Roman Lopes, A.The goal of the Open Cluster Chemical Abundances and Mapping (OCCAM) survey is to constrain key Galactic dynamic and chemical evolution parameters by the construction and analysis of a large, comprehensive, uniform data set of infrared spectra for stars in hundreds of open clusters. This sixth contribution from the OCCAM survey presents analysis of SDSS/APOGEE Data Release 17 (DR17) results for a sample of stars in 150 open clusters, 94 of which we designate to be "high-quality"based on the appearance of their color-magnitude diagram. We find the APOGEE DR17-derived [Fe/H] values to be in good agreement with those from previous high-resolution spectroscopic open cluster abundance studies. Using a subset of the high-quality sample, the Galactic abundance gradients were measured for 16 chemical elements, including [Fe/H], for both Galactocentric radius (R GC) and guiding center radius (R guide). We find an overall Galactic [Fe/H] versus R GC gradient of -0.073 ± 0.002 dex kpc-1 over the range of 6 > R GC < 11.5 kpc, and a similar gradient is found for [Fe/H] versus R guide. Significant Galactic abundance gradients are also noted for O, Mg, S, Ca, Mn, Na, Al, K, and Ce. Our large sample additionally allows us to explore the evolution of the gradients in four age bins for the remaining 15 elements. © 2022. The Author(s). Published by the American Astronomical Society.Item The Relationship between Globular Cluster Mass, Metallicity, and Light-element Abundance Variations(Astronomical Journal, 2019) Nataf, David M.; Wyse, Rosemary F. G.; Schiavon, Ricardo P.; Ting, Yuan-Sen; Minniti, Dante; Cohen, Roger E.; Fernández-Trincado, José G.; Geisler, Douglas; Nitschelm, Christian; Frinchaboy, Peter M.We investigate aluminum abundance variations in the stellar populations of globular clusters using both literature measurements of sodium and aluminum and APOGEE measurements of nitrogen and aluminum abundances. For the latter, we show that the Payne is the most suitable of the five available abundance pipelines for our purposes. Our combined sample of 42 globular clusters spans approximately 2 dex in [Fe/H] and 1.5 dex in . We find no fewer than five globular clusters with significant internal variations in nitrogen and/or sodium with little to no corresponding variation in aluminum, and that the minimum present-day cluster mass for aluminum enrichment in metal-rich systems is . We demonstrate that the slopes of the [Al/Fe] versus [Na/Fe] and [Al/Fe] versus [N/Fe] relations for stars without field-like abundances are approximately log-linearly dependent on both the metallicity and the stellar mass of the globular clusters. In contrast, the relationship between [Na/Fe] and [N/Fe] shows no evidence of such dependencies. This suggests that there were (at least) two classes of non-supernova chemical polluters that were common in the early universe, and that their relative contributions within globular clusters somehow scaled with the metallicity and mass of globular clusters. The first of these classes is predominantly responsible for the CNO and NeNa abundance variations, and likewise the second for the MgAl abundance variations. Particularly striking examples of this dichotomy include 47 Tuc and M4. As an auxiliary finding, we argue that abundance variations among Terzan 5 stars are consistent with it being a normal globular cluster.