Examinando por Autor "Ochner, P."
Mostrando 1 - 11 de 11
Resultados por página
Opciones de ordenación
Ítem Close, bright, and boxy: the superluminous SN 2018hti(Oxford University Press, 2022-05-01) Fiore, A.; Benetti, S.; Nicholl, M.; Reguitti, A.; Cappellaro, E.; Campana, S.; Bose, S.; Paraskeva, E.; Berger, E.; Bravo, T.M.; Burke, J.; Cai, Y.-Z.; Chen, T.-W.; Chen, P.; Ciolfi, R.; Dong, S.; Gomez, S.; Gromadzki, M.; Gutiérrez, C.P.; Hiramatsu, D.; Hosseinzadeh, G.; Howell, D.A.; Jerkstrand, A.; Kankare, E.; Kozyreva, A.; Maguire, K.; McCully, C.; Ochner, P.; Pellegrino, C.; Pignata, G.; Post, R.S.; Elias-Rosa, N.; Shahbandeh, M.; Schuldt, S.; Thomas, B.P.; Tomasella, L.; Vinkó, J.; Vogl, C.; Wheeler, J.C.; Young, D.R.SN 2018hti was a very nearby (z = 0.0614) superluminous supernova with an exceedingly bright absolute magnitude of -21.7 mag in r band at maximum. The densely sampled pre-maximum light curves of SN 2018hti show a slow luminosity evolution and constrain the rise time to ∼50 rest-frame d. We fitted synthetic light curves to the photometry to infer the physical parameters of the explosion of SN 2018hti for both the magnetar and the CSM-interaction scenarios. We conclude that one of two mechanisms could be powering the luminosity of SN 2018hti; interaction with ∼10 M⊙ of circumstellar material or a magnetar with a magnetic field of Bp∼1.3 × 1013 G, and initial period of Pspin∼1.8 ms. From the nebular spectrum modelling we infer that SN 2018hti likely results from the explosion of a ∼40M⊙ progenitor star. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Ítem Forbidden hugs in pandemic times: I. Luminous red nova at 2019zhd, a new merger in M 31(EDP Sciences, 2021-02-01) Pastorello, A.; Fraser, M.; Valerin, G.; Reguitti, A.; Itagaki, K.; Ochner, P.; Williams, S.C.; Jones, D.; Munday, J.; Smartt, S.J.; Smith, K.W.; Srivastav S., S.; Elias-Rosa, N.; Kankare, E.; Karamehmetoglu, E.; Lundqvist, P.; Mazzali, P. A.; Munari, U.; Stritzinger, M. D.; Tomasella, L.; Anderson, J. P.; Chambers, K. C.; Rest, A.We present the follow-up campaign of the luminous red nova (LRN) AT 2019zhd, the third event of this class observed in M 31. The object was followed by several sky surveys for about five months before the outburst, during which it showed a slow luminosity rise. In this phase, the absolute magnitude ranged from Mr =-2.8 ± 0.2 mag to Mr =-5.6 ± 0.1 mag. Then, over a four to five day period, AT 2019zhd experienced a major brightening, reaching a peak of Mr =-9.61 ± 0.08 mag and an optical luminosity of 1.4 × 1039 erg s-1. After a fast decline, the light curve settled onto a short-duration plateau in the red bands. Although less pronounced, this feature is reminiscent of the second red maximum observed in other LRNe. This phase was followed by a rapid linear decline in all bands. At maximum, the spectra show a blue continuum with prominent Balmer emission lines. The post-maximum spectra show a much redder continuum, resembling that of an intermediate-type star. In this phase, Hα becomes very weak, Hβ is no longer detectable, and a forest of narrow absorption metal lines now dominate the spectrum. The latest spectra, obtained during the post-plateau decline, show a very red continuum (Teff ≈ 3000 K) with broad molecular bands of TiO, similar to those of M-type stars. The long-lasting, slow photometric rise observed before the peak resembles that of LRN V1309 Sco, which was interpreted as the signature of the common-envelope ejection. The subsequent outburst is likely due to the gas outflow following a stellar merging event. The inspection of archival HST images taken 22 years before the LRN discovery reveals a faint red source (MF555W = 0.21 ± 0.14 mag, with F555W-F814W = 2.96 ± 0.12 mag) at the position of AT 2019zhd, which is the most likely quiescent precursor. The source is consistent with expectations for a binary system including a predominant M5-type star.Ítem Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions(EDP Sciences, 2021-10-01) Cai, Y.-Z.; Pastorello, A.; Fraser, M.; Botticella, M. T.; Elias-Rosa, N.; Wang, L.-Z.; Kotak, R.; Benetti, S.; Cappellaro, E.; Turatto, M.; Reguitti, A.; Mattila, S.; Smartt, S. J.; Ashall, C.; Benitez, S.; Chen, T.-W.; Harutyunyan, A.; Kankare, E.; Lundqvist, P.; Mazzali, P. A.; Morales-Garoffolo, A.; Ochner, P.; Pignata, G.; Prentice, S. J.; Reynolds, T. M.; Shu, X.-W.; Stritzinger, M. D.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Valenti, S.; Valerin, G.; Wang, G.-J.; Wang, X.-F.; Borsato, L.; Callis, E.; Cannizzaro, G.; Chen, S.; Congiu, E.; Ergon, M.; Galbany, L.; Gal-Yam, A.; Gao, X.; Gromadzki, M.; Holmbo, S.; Huang, F.; Inserra, C.; Itagaki, K.; Kostrzewa-Rutkowska, Z.; Maguire, K.; Margheim, S.; Moran, S.; Onori, F.; Sagués Carracedo, A.; Smith, K. W.; Sollerman, J.; Somero, A.; Wang, B.; Young, D. R.We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between-11.5 and-14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5-9.0 × 1040 erg s-1 and their total radiated energies are on the order of (0.3-3) × 1047 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56Ni masses on the order of 10-4 to 10-3 M⊙. The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km s-1, along with Ca II features. In particular, the [Ca II] λ7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events.Ítem Massive stars exploding in a He-rich circumstellar medium - IV. Transitional type Ibn supernovae(Oxford University Press, 2015-05) Pastorello, A.; Benetti, S.; Brown, P.J.; Tsvetkov, D.Y.; Inserra, C.; Taubenberger, S.; Tomasella, L.; Fraser, M.; Rich, D.J.; Botticella, M.T.; Bufano, F.; Cappellaro, E.; Ergon, M.; Gorbovskoy, E.S.; Harutyunyan, A.; Huang, F.; Kotak, R.; Lipunov, V.M.; Magill, L.; Miluzio, M.; Morrell, N.; Ochner, P.; Smartt, S.J.; Sollerman, J.; Spiro, S.; Stritzinger, M.D.; Turatto, M.; Valenti, S.; Wang, X.; Wright, D.E.; Yurkov, V.V.; Zampieri, L.; Zhang, L.We present ultraviolet, optical and near-infrared data of the Type Ibn supernovae (SNe) 2010al and 2011hw. SN 2010al reaches an absolute magnitude at peak of MR = -18.86 ± 0.21. Its early light curve shows similarities with normal SNe Ib, with a rise to maximum slower than most SNe Ibn. The spectra are dominated by a blue continuum at early stages, with narrow P-Cygni He I lines indicating the presence of a slow-moving, He-rich circumstellar medium. At later epochs, the spectra well match those of the prototypical SN Ibn 2006jc, although the broader lines suggest that a significant amount of He was still present in the stellar envelope at the time of the explosion. SN 2011hw is somewhat different. It was discovered after the first maximum, but the light curve shows a double peak. The absolute magnitude at discovery is similar to that of the second peak (MR = -18.59 ± 0.25), and slightly fainter than the average of SNe Ibn. Though the spectra of SN 2011hw are similar to those of SN 2006jc, coronal lines and narrow Balmer lines are clearly detected. This indicates substantial interaction of the SN ejecta with He-rich, but not H-free, circumstellar material. The spectra of SN 2011hw suggest that it is a transitional SN Ibn/IIn event similar to SN 2005la. While for SN 2010al the spectrophotometric evolution favours a H-deprived Wolf-Rayet progenitor (of WN-type), we agree with the conclusion of Smith et al. that the precursor of SN 2011hw was likely in transition from a luminous blue variable to an early Wolf-Rayet (Ofpe/WN9) stage. © 2015 The Authors.Ítem Optical and near-infrared observations of SN 2011dh-The first 100 days(EDP Sciences, 2014-02) Ergon, M.; Sollerman, J.; Fraser, M.; Pastorello, A.; Taubenberger, S.; Elias-Rosa, N.; Bersten, M.; Jerkstrand, A.; Benetti, S.; Botticella, M.T.; Fransson, C.; Harutyunyan, A.; Kotak, R.; Smartt, S.; Valenti, S.; Bufano, F.; Cappellaro, E.; Fiaschi, M.; Howell, A.; Kankare, E.; Magill, L.; Mattila, S.; Maund, J.; Naves, R.; Ochner, P.; Ruiz, J.; Smith, K.; Tomasella, L.; Turatto, M.We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with Swift ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolo metric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten et al. (2012, ApJ, 757, 31). We find that the absorption minimum for the hydrogen lines is never seen below ∼11 000 km s−1 but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01–0.04 M to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5–7 days whereas the helium lines appear between ∼10 and ∼15 days, close to the photosphere and then move outward in velocity until ∼40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the γ-rays is driving the early evo lution of these lines. The Spitzer 4.5 µm band shows a significant flux excess, which we attribute to CO fundamental band emission or a thermal dust echo although further work using late time data is needed. The distance and in particular the extinction, where we use spectral modelling to put further constraints, is discussed in some detail as well as the sensitivity of the hydrodynamical modelling to errors in these quantities. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by ∼75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag day−1 respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011, ApJ, 739, L37) and which is also consistent with the results from the hydrodynamical modelling.Ítem SN 2012ec: Mass of the progenitor from PESSTO follow-up of the photospheric phase(Oxford University Press, 2015-04) Barbarino, C.; Dall'Ora, M.; Botticella, M.T.; Della Valle, M.; Zampieri, L.; Maund, J.R.; Pumo, M.L.; Jerkstrand, A.; Benetti, S.; Elias-Rosa, N.; Fraser, M.; Gal-Yam, A.; Hamuy, M.; Inserra, C.; Knapic, C.; LaCluyze, A.P.; Molinaro, M.; Ochner, P.; Pastorello, A.; Pignata, G.; Reichart, D.E.; Ries, C.; Riffeser, A.; Schmidt, B.; Schmidt, M.; Smareglia, R.; Smartt, S.J.; Smith, K.; Sollerman, J.; Sullivan, M.; Tomasella, L.; Turatto, M.; Valenti, S.; Yaron, O.; Young, D.We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L = 0.9 × 1042 erg s-1 and duration ~90 d, which is somewhat shorter than standard Type II-P supernovae (SNe). We estimate the nickel mass M(56Ni) = 0.040 ± 0.015 M⊙ from the luminosity at the beginning of the radioactive tail of the light curve. The explosion parameters of SN 2012ec were estimated from the comparison of the bolometric light curve and the observed temperature and velocity evolution of the ejecta with predictions from hydrodynamical models.We derived an envelope mass of 12.6 M⊙, an initial progenitor radius of 1.6 × 1013 cm and an explosion energy of 1.2 foe. These estimates agree with an independent study of the progenitor star identified in pre-explosion images, for which an initial mass ofM = 14-22 M⊙ was determined.We have applied the same analysis to two other Type II-P SNe (SNe 2012aw and 2012A), and carried out a comparison with the properties of SN 2012ec derived in this paper.We find a reasonable agreement between the masses of the progenitors obtained from pre-explosion images and masses derived from hydrodynamical models. We estimate the distance to SN 2012ec with the standardized candle method (SCM) and compare it with other estimates based on other primary and secondary indicators. SNe 2012A, 2012aw and 2012ec all follow the standard relations for the SCM for the use of Type II-P SNe as distance indicators. © 2015 The Authors.Ítem SN 2020wnt: a slow-evolving carbon-rich superluminous supernova with no O II lines and a bumpy light curve(Oxford University Press, 2022-09) Gutiérrez, C.P.; Pastorello, A.; Bersten, M.; Benetti, S.; Orellana, M.; Fiore, A.; Karamehmetoglu, E.; Kravtsov, T.; Reguitti, A.; Reynolds, T.M.; Valerin, G.; Mazzali, P.; Sullivan, M.; Cai, Y.-Z.; Elias-Rosa, N.; Fraser, M.; Hsiao, E.Y.; Kankare, E.; Kotak, R.; Kuncarayakti, H.; Li, Z.; Mattila, S.; Mo, J.; Moran, S; Ochner, P.; Shahbandeh, M.; Tomasella, L.; Wang, X.; Yan, S.; Zhang, J.; Zhang, T.; Stritzinger, M. D.We present the analysis of SN 2020wnt, an unusual hydrogen-poor superluminous supernova (SLSN-I), at a redshift of 0.032. The light curves of SN 2020wnt are characterized by an early bump lasting ∼5 d, followed by a bright main peak. The SN reaches a peak absolute magnitude of Mmax r = −20.52 ± 0.03 mag at ∼77.5 d from explosion. This magnitude is at the lower end of the luminosity distribution of SLSNe-I, but the rise-time is one of the longest reported to date. Unlike other SLSNe-I, the spectra of SN 2020wnt do not show O II, but strong lines of C II and Si II are detected. Spectroscopically, SN 2020wnt resembles the Type Ic SN 2007gr, but its evolution is significantly slower. Comparing the bolometric light curve to hydrodynamical models, we find that SN 2020wnt luminosity can be explained by radioactive powering. The progenitor of SN 2020wnt is likely a massive and extended star with a pre-SN mass of 80 M and a pre-SN radius of 15 R that experiences a very energetic explosion of 45 × 1051 erg, producing 4 M of 56Ni. In this framework, the first peak results from a post-shock cooling phase for an extended progenitor, and the luminous main peak is due to a large nickel production. These characteristics are compatible with the pair-instability SN scenario. We note, however, that a significant contribution of interaction with circumstellar material cannot be ruled out.Ítem SNe 2013K and 2013am: Observed and physical properties of two slow, normal Type IIP events(Oxford University Press, 2018-04) Tomasella, L.; Cappellaro, E.; Pumo, M.L.; Jerkstrand, A.; Benetti, S.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Pastorello, A.; Turatto, M.; Anderson, J.P.; Galbany, L.; Gutiérrez, C.P.; Kankare, E.; Pignata, G.; Terreran, G.; Valenti, S.; Barbarino, C.; Bauer, F.E.; Botticella, M.T.; Chen, T.-W.; Gal-Yam, A.; Harutyunyan, A.; Howell, D.A.; Maguire, K.; Garoffolo, A.M.; Ochner, P.; Smartt, S.J.; Schulze, S.; Young, D.R.; Zampieri, L.We present 1 yr of optical and near-infrared photometry and spectroscopy of the Type IIP SNe 2013K and 2013am. Both objects are affected by significant extinction, due to their location in dusty regions of their respective host galaxies, ESO 009-10 and NGC 3623 (M65). From the photospheric to nebular phases, these objects display spectra congruent with those of underluminous Type IIP SNe (i.e. the archetypal SNe 1997D or 2005cs), showing low photospheric velocities (~2 × 10 3 km s -1 at 50 d) together with features arising from Ba II that are particularly prominent in faint SNe IIP. The peak V-band magnitudes of SN 2013K (-15.6mag) and SN 2013am (-16.2mag) are fainter than standard-luminosity Type IIP SNe. The ejected nickel masses are 0.012 ± 0.010 and 0.015 ± 0.006 M ⊙ for SN 2013K and SN 2013am, respectively. The physical properties of the progenitors at the time of explosion are derived through hydrodynamical modelling. Fitting the bolometric curves, the expansion velocity and the temperature evolution, we infer total ejected masses of 12 and 11.5 M ⊙ , pre- SN radii of~460 and~360 R ⊙ , and explosion energies of 0.34 foe and 0.40 foe for SN 2013K and SN 2013am. Late time spectra are used to estimate the progenitormasses from the strength of nebular emission lines, which turn out to be consistent with red supergiant progenitors of ~15 M ⊙ . For both SNe, a low-energy explosion of a moderate-mass red supergiant star is therefore the favoured scenario. © 2017 The Authors.Ítem SNhunt151: An explosive event inside a dense cocoon(Oxford University Press, 2018-04) Elias-Rosa, N.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Terreran, G.; Morales-Garoffolo, A.; Howerton, S.C.; Valenti, S.; Kankare, E.; Drake, A.J.; Djorgovski, S.G.; Tomasella, L.; Tartaglia, L.; Kangas, T.; Ochner, P.; Filippenko, A.V.; Ciabattari, F.; Geier, S.; Howell, D.A.; Isern, J.; Leonini, S.; Pignata, G.; Turatto, M.SNhunt151 was initially classified as a supernova (SN) impostor (nonterminal outburst of a massive star). It exhibited a slow increase in luminosity, lasting about 450 d, followed by a major brightening that reaches M V ≈ -18 mag. No source is detected to M V ≳ -13 mag in archival images at the position of SNhunt151 before the slow rise. Low-to-mid-resolution optical spectra obtained during the pronounced brightening show very little evolution, being dominated at all times by multicomponent Balmer emission lines, a signature of interaction between the material ejected in the new outburst and the pre-existing circumstellar medium. We also analysed mid-infrared images from the Spitzer Space Telescope, detecting a source at the transient position in 2014 and 2015. Overall, SNhunt151 is spectroscopically a Type IIn SN, somewhat similar to SN 2009ip. However, there are also some differences, such as a slow pre-discovery rise, a relatively broad light-curve peak showing a longer rise time (~50 d), and a slower decline, along with a negligible change in the temperature around the peak (T ≤ 10 4 K). We suggest that SNhunt151 is the result of an outburst, or an SN explosion, within a dense circumstellar nebula, similar to those embedding some luminous blue variables like η Carinae and originating from past mass-loss events. © 2017 The Author(s).Ítem The type IIP supernova 2012aw in m95: Hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring(Institute of Physics Publishing, 2014-06) Dall'Ora, M.; Botticella, M.T.; Pumo, M.L.; Zampieri, L.; Tomasella, L.; Pignata, G.; Bayless, A.J.; Pritchard, T.A.; Taubenberger, S.; Kotak, R.; Inserra, C.; Della Valle, M.; Cappellaro, E.; Benetti, S.; Benitez, S.; Bufano, F.; Elias-Rosa, N.; Fraser, M.; Haislip, J.B.; Harutyunyan, A.; Howell, D.A.; Hsiao, E.Y.; Iijima, T.; Kankare, E.; Kuin, P.; Maund, J.R.; Morales-Garoffolo, A.; Morrell, N.; Munari, U.; Ochner, P.; Pastorello, A.; Patat, F.; Phillips, M.M.; Reichart, D.; Roming, P.W.A.; Siviero, A.; Smartt, S.J.; Sollerman, J.; Taddia, F.; Valenti, S.; Wright, D.We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the 56Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical-infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass Menv ∼ 20 M , progenitor radius R ∼ 3 × 1013 cm (∼430 R ), explosion energy E ∼ 1.5 foe, and initial 56Ni mass ∼0.06 M . These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M of the Type IIP events.Ítem The VVV templates project towards an automated classification of VVV light-curves: I. Building a database of stellar variability in the near-infrared(EDP Sciences, 2014-07) Angeloni, R.; Contreras Ramos, R.; Catelan, M.; Dékány, I.; Gran, F.; Alonso-García, J.; Hempel, M.; Navarrete, C.; Andrews, H.; Aparicio, A.; Beamín, J.C.; Berger, C.; Borissova, J.; Contreras Peña, C.; Cunial, A.; De Grijs, R.; Espinoza, N.; Eyheramendy, S.; Eyheramendy, S.; Fiaschi, M.; Hajdu, G.; Han, J.; Hełminiak, K.G.; Hempel, A.; Hidalgo, S.L.; Ita, Y.; Jeon Y., -B; Jordán, A.; Kwon, J.; Lee, J.T.; Martín, E.L.; Masetti, N.; Matsunaga, N.; Milone, A.P.; Minniti, D.; Morelli, L.; Murgas, F.; Nagayama, T.; Navarro, C.; Ochner, P.; Pérez, P.; Pichara, K.; Rojas-Arriagada, A.; Roquette, J.; Saito, R.K.; Siviero, A.; Sohn, J.; Sung, H.-I.; Tamura, M.; Tata, R.; Tomasella, L.; Townsend, B.; Whitelock, P.Context. The Vista Variables in the Vía Láctea (VVV) ESO Public Survey is a variability survey of the Milky Way bulge and an adjacent section of the disk carried out from 2010 on ESO Visible and Infrared Survey Telescope for Astronomy (VISTA). The VVV survey will eventually deliver a deep near-IR atlas with photometry and positions in five passbands (ZYJHKS) and a catalogue of 1−10 million variable point sources – mostly unknown – that require classifications. Aims. The main goal of the VVV Templates Project, which we introduce in this work, is to develop and test the machine-learning algorithms for the automated classification of the VVV light-curves. As VVV is the first massive, multi-epoch survey of stellar variability in the near-IR, the template light-curves that are required for training the classification algorithms are not available. In the first paper of the series we describe the construction of this comprehensive database of infrared stellar variability. Methods. First, we performed a systematic search in the literature and public data archives; second, we coordinated a worldwide observational campaign; and third, we exploited the VVV variability database itself on (optically) well-known stars to gather high-quality infrared light-curves of several hundreds of variable stars. Results. We have now collected a significant (and still increasing) number of infrared template light-curves. This database will be used as a training-set for the machine-learning algorithms that will automatically classify the light-curves produced by VVV. The results of such an auto mated classification will be covered in forthcoming papers of the series.