Examinando por Autor "Orellana, A"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Identification of Novel Components of the Unfolded Protein Response in Arabidopsis(FRONTIERS MEDIA, 2016) Hossain, MA; Henriquez-Valencia, C; Gomez-Paez, M; Medina, J; Orellana, A; Vicente-Carbajosa, J; Zouhar, JUnfavorable environmental and developmental conditions may cause disturbances in protein folding in the endoplasmic reticulum (ER) that are recognized and counteracted by components of the Unfolded Protein Response (UPR) signaling pathways. The early cellular responses include transcriptional changes to increase the folding and processing capacity of the ER. In this study, we systematically screened a collection of inducible transgenic Arabidopsis plants expressing a library of transcription factors for resistance toward UPR-inducing chemicals. We identified 23 candidate genes that may function as novel regulators of the UPR and of which only three genes (bZIP10, TBF1, and NF-YB3) were previously associated with the UPR. The putative role of identified candidate genes in the UPR signaling is supported by favorable expression patterns in both developmental and stress transcriptional analyses. We demonstrated that WRKY75 is a genuine regulator of the ER-stress cellular responses as its expression was found to be directly responding to ER stress-inducing chemicals. In addition, transgenic Arabidopsis plants expressing WRKY75 showed resistance toward salt stress, connecting abiotic and ER-stress responses.Ítem The import of S-Adenosylmethionine into the golgi apparatus is required for the methylation of homogalacturonan(Oxford University Press, 2007-10-01) Ibar, C; Orellana, AS-adenosylmethionine (SAM) is the substrate used in the methylation of homogalacturonan (HGA) in the Golgi apparatus. SAM is synthesized in the cytosol, but it is not currently known how it is then transported into the Golgi. In this study, we find that HGA methyltransferase is present in Golgi-enriched fractions and that its catalytic domain faces the lumen of this organelle. This suggests that SAM must be imported into the Golgi. We performed uptake experiments using [methyl-(14)C] SAM and found that SAM is incorporated into the Golgi vesicles, resulting in the methylation of polymers that are sensitive to pectinase and pectin methylesterase but not to proteases. To avoid detecting the transfer reaction, we also used [carboxyl-(14)C] SAM, the uptake of which into Golgi vesicles was found to be sensitive to temperature, detergents, and osmotic changes, and to be saturable with a K m of 33 mu M. Double-label uptake experiments using [methyl-(3)H] SAM and [carboxyl-(14)C] SAM also revealed a time-dependent increase in the (3)H to (14)C ratio, suggesting that upon transfer of the methyl group, the resulting S-adenosylhomocysteine is not accumulated in the Golgi. SAM incorporation was also found to be inhibited by S-adenosylhomocysteine, whereas UDP-GalA, UDP-GlcA, and acetyl-CoA had no effect. DIDS, a compound that inhibits nucleotide sugar transporters, also had little effect upon SAM incorporation. Interestingly, the combination of UDP-GalA + acetyl-CoA or UDP-GlcA + acetyl-CoA produced a slight increase in the uptake of SAM. These results support the idea that a SAM transporter is required for HGA biosynthesis.