Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Ormeno, Pablo"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Evaluation of Machine Learning Techniques for Classifying and Balancing Data on an Unbalanced Mini-Mental State Examination Test Data Collection Applied in Chile
    (Institute of Electrical and Electronics Engineers Inc., 2024) Ormeno, Pablo; Marquez, Gaston; Taramasco, Carla
    The Mini-Mental State Examination (MMSE) is the most widely used cognitive test for assessing whether suspected symptoms align with cognitive impairment or dementia. The results of this test are meaningful for clinicians but exhibit highly unbalanced distributions in studies and analyses regarding the classification of patients with cognitive impairment. This is a complex problem when a large number of MMSE tests are analysed. Therefore, data balancing and classification techniques are crucial to support decision-making in distinguishing patients with cognitive impairment in an effective and efficient manner. This study explores machine learning techniques for data balancing and classification using a real unbalanced dataset consisting of MMSE test responses collected from 103 elderly patients participating in a Chilean patient monitoring project. We used 8 data classification techniques and five data balancing techniques. We evaluated the performance of the techniques using the following metrics: sensitivity, specificity, F1-score, likelihood ratio (LR+ and LR-), diagnostic odds ratio (DOR), and the area under the ROC curve (AUC). From the set of data balancing and classification techniques used in this study, the results indicate that synthetic minority oversampling and random forest balancing techniques improve the accuracy of cognitive impairment diagnosis. The results obtained in this study support clinical decision-making regarding early classification or exclusion of older adult patients with suspected cognitive impairment. © 2013 IEEE.