Examinando por Autor "Pakmor, R."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem 500 days of SN 2013dy: Spectra and photometry from the ultraviolet to the infrared(Oxford University Press, 2015-07) Pan, Y.-C.; Foley, R.J.; Kromer, M.; Fox, O.D.; Zheng, W.; Challis, P.; Clubb, K.; Filippenko, A.V.; Folatelli, G.; Graham, M.L.; Hillebrandt, W.; Kirshner, R.P.; Lee, W.H.; Pakmor, R.; Patat, F.; Phillips, M.M.; Pignata, G.; Röpke, F.; Seitenzahl, I.; Silverman, J.M.; Simon, J.D.; Sternberg, A.; Stritzinger, M.D.; Taubenberger, S.; Vinko, J.; Wheeler, J.C.SN 2013dy is a Type Ia supernova (SN Ia) for which we have compiled an extraordinary data set spanning from 0.1 to ~ 500 d after explosion. We present 10 epochs of ultraviolet (UV) through near-infrared (NIR) spectra with Hubble Space Telescope/Space Telescope Imaging Spectrograph, 47 epochs of optical spectra (15 of them having high resolution), and more than 500 photometric observations in the BVrRiIZYJH bands. SN 2013dy has a broad and slowly declining light curve (Δm15(B)=0.92 mag), shallow Si II λ6355 absorption, and a low velocity gradient. We detect strong C II in our earliest spectra, probing unburned progenitor material in the outermost layers of the SN ejecta, but this feature fades within a few days. The UV continuum of SN 2013dy, which is strongly affected by the metal abundance of the progenitor star, suggests that SN 2013dy had a relatively high-metallicity progenitor. Examining one of the largest single set of high-resolution spectra for an SN Ia, we find no evidence of variable absorption from circumstellar material. Combining our UV spectra, NIR photometry, and high-cadence optical photometry, we construct a bolometric light curve, showing that SN 2013dy had a maximum luminosity of 10.0+4.8 -3.8 × 1042 erg s-1. We compare the synthetic light curves and spectra of several models to SN 2013dy, finding that SN 2013dy is in good agreement with a solar-metallicity W7 model. © 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Ítem Chemodynamics of barred galaxies in cosmological simulations: On the Milky Way’s quiescent merger history and in-situ bulge(Oxford University Press, 2020-04) Fragkoudi, F.; Grand, R.J.J.; Pakmor, R.; Blázquez-Calero, G.; Gargiulo, I.; Gómez, F.; Marinacci, F.; Monachesi, A.; Ness, M.K.; Pérez, I.; Tissera, P.; White S.D.M., S.D.M.We explore the chemodynamical properties of a sample of barred galaxies in the Auriga magnetohydrodynamical cosmological zoom-in simulations, which form boxy/peanut (b/p) bulges, and compare these to the Milky Way (MW). We show that the Auriga galaxies which best reproduce the chemodynamical properties of stellar populations in the MW bulge have quiescent merger histories since redshift z ∼ 3.5: their last major merger occurs at tlookback > 12 Gyr, while subsequent mergers have a stellar mass ratio of ≤1:20, suggesting an upper limit of a few per cent for the mass ratio of the recently proposed Gaia Sausage/Enceladus merger. These Auriga MW-analogues have a negligible fraction of ex-situ stars in the b/p region (< 1 per cent), with flattened, thick disc-like metal-poor stellar populations. The average fraction of ex-situ stars in the central regions of all Auriga galaxies with b/p’s is 3 per cent – significantly lower than in those which do not host a b/p or a bar. While the central regions of these barred galaxies contain the oldest populations, they also have stars younger than 5 Gyr (>30 per cent) and exhibit X-shaped age and abundance distributions. Examining the discs in our sample, we find that in some cases a star-forming ring forms around the bar, which alters the metallicity of the inner regions of the galaxy. Further out in the disc, bar-induced resonances lead to metal-rich ridges in the Vφ − r plane – the longest of which is due to the Outer Lindblad Resonance. Our results suggest the Milky Way has an uncommonly quiet merger history, which leads to an essentially in-situ bulge, and highlight the significant effects the bar can have on the surrounding disc. © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical SocietyÍtem Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust(Oxford University Press, 2014) Foley, Ryan J.; Fox, O.D.; McCully, C.; Phillips, M.M.; Sand, D.J.; Zheng, W.; Challis, P.; Filippenko, A.V.; Folatelli, G.; Hillebrandt, W.; Hsiao, E.Y.; Jha, S.W.; Kirshner, R.P.; Kromer, M.; Marion, G.H.; Nelso, M.; Pakmor, R.; Pignata, G.; R̈opke, F.K.; Seitenzahl, I.R.; Silverman, J.M.; Skrutskie, M.; Stritzinger, M.D.SN 2014J in M82 is the closest detected Type Ia supernova (SN Ia) in at least 28 yr and perhaps in 410 yr. Despite its small distance of 3.3 Mpc, SN 2014J is surprisingly faint, peaking at V = 10.6 mag, and assuming a typical SN Ia luminosity, we infer an observed visual extinction of AV = 2.0 ± 0.1 mag. But this picture, with RV = 1.6 ± 0.2, is too simple to account for all observations. We combine 10 epochs (spanning a month) of HST/Space Telescope Imaging Spectrograph (STIS) ultraviolet through near-infrared spectroscopy with HST/Wide Field Camera 3 (WFC3), Katzman Automatic Imaging Telescope, and FanCam photometry from the optical to the infrared and nine epochs of high-resolution TRES (Tillinghast Reflection Echelle Spectrograph) spectroscopy to investigate the sources of extinction and reddening for SN 2014J. We argue that the wide range of observed properties for SN 2014J is caused by a combination of dust reddening, likely originating in the interstellar medium of M82, and scattering off circumstellar material. For this model, roughly half of the extinction is caused by reddening from typical dust (E(B − V) = 0.45 mag and RV = 2.6) and roughly half by scattering off Large Magellanic Cloud-like dust in the circumstellar environment of SN 2014J.