Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Plaza, Francisco"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Prediction of intensity and location of seismic events using deep learning
    (Elsevier B.V., 2021-04) Nicolis, Orietta; Plaza, Francisco; Salas, Rodrigo
    The object of this work is to predict the seismic rate in Chile by using two Deep Neural Network (DNN) architectures, Long Short Term Memory (LSTM) and Convolutional Neural Networks (CNN). For this, we propose a methodology based on a three-module approach: a pre-processing module, a spatial and temporal estimation module, and a prediction module. The first module considers the Epidemic-Type Aftershock Sequences (ETAS) model for estimating the intensity function, which will be used for estimating the seismic rate on a 1 × 1 degree grid providing a sequence of daily images covering all the seismic area of Chile. The spatial and temporal estimation module uses the LSTM and CNN for predicting the intensity and the location of earthquakes. The last module integrates the information provided by the DNNs for predicting future values of the maximum seismic rate and their location. In particular, the LSTM will be trained using the maximum intensity of the last 30 days as input for predicting the maximum intensity of the next day, and the CNN will be trained on the last 30 images provided by the application of the ETAS model for predicting the probability that the next day the maximum event will be in certain area of Chile. Some performance indexes (such as R2 and accuracy) will be used for validating the proposed models. © 2020 Elsevier B.V.