Examinando por Autor "Poblete-Castro, Ignacio"
Mostrando 1 - 9 de 9
Resultados por página
Opciones de ordenación
Ítem Cascaded valorization of brown seaweed to produce L-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering(Academic Press Inc., 2021-09) Hoffmann, Sarah Lisa; Kohlstedt, Michael; Jungmann, Lukas; Hutter, Michael; Poblete-Castro, Ignacio; Becker, Judith; Wittmann, ChristophSeaweeds emerge as promising third-generation renewable for sustainable bioproduction. In the present work, we valorized brown seaweed to produce L-lysine, the world's leading feed amino acid, using Corynebacterium glutamicum, which was streamlined by systems metabolic engineering. The mutant C. glutamicum SEA-1 served as a starting point for development because it produced small amounts of L-lysine from mannitol, a major seaweed sugar, because of the deletion of its arabitol repressor AtlR and its engineered L-lysine pathway. Starting from SEA-1, we systematically optimized the microbe to redirect excess NADH, formed on the sugar alcohol, towards NADPH, required for L-lysine synthesis. The mannitol dehydrogenase variant MtlD D75A, inspired by 3D protein homology modelling, partly generated NADPH during the oxidation of mannitol to fructose, leading to a 70% increased L-lysine yield in strain SEA-2C. Several rounds of strain engineering further increased NADPH supply and L-lysine production. The best strain, SEA-7, overexpressed the membrane-bound transhydrogenase pntAB together with codon-optimized gapN, encoding NADPH-dependent glyceraldehyde 3-phosphate dehydrogenase, and mak, encoding fructokinase. In a fed-batch process, SEA-7 produced 76 g L−1 L-lysine from mannitol at a yield of 0.26 mol mol−1 and a maximum productivity of 2.1 g L−1 h−1. Finally, SEA-7 was integrated into seaweed valorization cascades. Aqua-cultured Laminaria digitata, a major seaweed for commercial alginate, was extracted and hydrolyzed enzymatically, followed by recovery and clean-up of pure alginate gum. The residual sugar-based mixture was converted to L-lysine at a yield of 0.27 C-mol C-mol−1 using SEA-7. Second, stems of the wild-harvested seaweed Durvillaea antarctica, obtained as waste during commercial processing of the blades for human consumption, were extracted using acid treatment. Fermentation of the hydrolysate using SEA-7 provided L-lysine at a yield of 0.40 C-mol C-mol−1. Our findings enable improvement of the efficiency of seaweed biorefineries using tailor-made C. glutamicum strains.Ítem Comparison of mcl-poly(3-hydroxyalkanoates) synthesis by different pseudomonas putida strains from crude glycerol: Citrate accumulates at high titer under PHA-producing conditions(BioMed Central Ltd., 2014) Poblete-Castro, Ignacio; Binger, Danielle; Oehlert, Rene; Rohde, ManfredBackground: Achieving a sustainable society requires, among other things, the use of renewable feedstocks to replace chemicals obtained from petroleum-derived compounds. Crude glycerol synthesized inexpensively as a byproduct of biodiesel production is currently considered a waste product, which can potentially be converted into value-added compounds by bacterial fermentation. This study aimed at evaluating several characterized P. putida strains to produce medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA) using raw glycerol as the only carbon/energy source. Results: Among all tested strains, P. putida KT2440 most efficiently synthesized mcl-PHA under nitrogen-limiting conditions, amassing more than 34% of its cell dry weight as PHA. Disruption of the PHA depolymerase gene (phaZ) in P. putida KT2440 enhanced the biopolymer titer up to 47% PHA (%wt/wt). The low biomass and PHA titer found in the mutant strain and the wild-type strain KT2440 seems to be triggered by the high production of the side-product citrate during the fermentation process which shows a high yield of 0.6 g/g. Conclusions: Overall, this work demonstrates the importance of choosing an appropriate microbe for the synthesis of mcl-PHA from waste materials, and a close inspection of the cell metabolism in order to identify undesired compounds that diminish the availability of precursors in the synthesis of biopolymers such as polyhydroxyalkanoates. Future metabolic engineering works should focus on reducing the production of citrate in order to modulate resource allocation in the cell's metabolism of P. putida, and finally increase the biopolymer production. © 2014 Poblete-Castro et al.; licensee BioMed Central.Ítem Engineering the Osmotic State of Pseudomonas putida KT2440 for Efficient Cell Disruption and Downstream Processing of Poly(3-Hydroxyalkanoates)(Frontiers Media S.A., 2020-03) Poblete-Castro, Ignacio; Aravena-Carrasco, Carla; Orellana-Saez, Matias; Pacheco, Nicolás; Cabrera, AlexIn the last decade, the development of novel programmable cell lytic systems based on different inducible genetic constructs like the holin–endolysin and lysozyme appears as a promising alternative to circumvent the use of costly enzymes and mechanical disrupters for downstream processing of intracellular microbial products. Despite the advances, upon activation of these systems the cellular disruption of the biocatalyst occurs in an extended period, thus delaying the recovery of poly(3-hydroxyalkanoate) (PHA). Herein the osmotic state of Pseudomonas putida KT2440 was engineered by inactivating the inner-membrane residing rescue valve MscL, which is responsible mainly for circumventing low-osmolarity challenges. Then the major outer membrane porin OprF and the specific porin OprE were overproduced during PHA producing conditions on decanoate-grown cells. The engineered P. putida strains carrying each porin showed no impairment on growth rate and final biomass and PHA yield after 48 h cultivation. Expression of both porins in tandem in the mutant strain KTΔmscL-oprFE led to a slight reduction of the biomass synthesis (∼10%) but higher PHA accumulation (%wt) relative to the cell dry mass. Each strain was then challenged to an osmotic upshift for 1 h and subsequently to a rapid passage to a hypotonic condition where the membrane stability of the KTΔmscL-oprFE suffered damage, resulting in a rapid reduction of cell viability. Cell disruption accounted for >95% of the cell population within 3 h as reported by colony forming units (CFU), FACS analyses, and transmission electron microscopy. PHA recovery yielded 94.2% of the biosynthesized biopolymer displaying no significant alterations on the final monomer composition. This study can serve as an efficient genetic platform for the recovery of any microbial intracellular compound allowing less unit operation steps for cellular disruption. © Copyright © 2020 Poblete-Castro, Aravena-Carrasco, Orellana-Saez, Pacheco, Cabrera and Borrero-de Acuña.Ítem Exploiting the natural poly(3-hydroxyalkanoates) production capacity of Antarctic Pseudomonas strains: from unique phenotypes to novel biopolymers(Springer Verlag, 2019-08-01) Pacheco, Nicolas; Orellana-Saez, Matias; Pepczynska, Marzena; Enrione, Javier; Bassas-Galia, Monica; Borrero-de Acuña, Jose M.; Zacconi, Flavia C.; Marcoleta, Andrés E.; Poblete-Castro, IgnacioExtreme environments are a unique source of microorganisms encoding metabolic capacities that remain largely unexplored. In this work, we isolated two Antarctic bacterial strains able to produce poly(3-hydroxyalkanoates) (PHAs), which were classified after 16S rRNA analysis as Pseudomonas sp. MPC5 and MPC6. The MPC6 strain presented nearly the same specific growth rate whether subjected to a temperature of 4 °C 0.18 (1/h) or 30 °C 0.2 (1/h) on glycerol. Both Pseudomonas strains produced high levels of PHAs and exopolysaccharides from glycerol at 4 °C and 30 °C in batch cultures, an attribute that has not been previously described for bacteria of this genus. The MPC5 strain produced the distinctive medium-chain-length-PHA whereas Pseudomonas sp. MPC6 synthesized a novel polyoxoester composed of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate). Batch bioreactor production of PHAs in MPC6 resulted in a titer of 2.6 (g/L) and 1.3 (g/L), accumulating 47.3% and 34.5% of the cell dry mass as PHA, at 30 and 4 °C, respectively. This study paves the way for using Antarctic Pseudomonas strains for biosynthesizing novel PHAs from low-cost substrates such as glycerol and the possibility to carry out the bioconversion process for biopolymer synthesis without the need for temperature control.Ítem Levels of persistent organic pollutants (POPs) in the Antarctic atmosphere over time (1980 to 2021) and estimation of their atmospheric half-lives(Copernicus Publications, 2023-07-19) Luarte, Thais; Gómez-Aburto, Victoria A.; Poblete-Castro, Ignacio; Castro-Nallar, Eduardo; Hunneus, Nicolas; Molina-Montenegro, Marco; Egas, Claudia; Azcune, Germán; Pérez-Parada, Andrés; Lohmann, Rainier; Bohlin-Nizzetto, Pernilla; Dachs, Jordi; Bengtson-Nash, Susan; Chiang, Gustavo; Pozo, Karla; Galbán-Malagón, Cristóbal J.Persistent organic pollutants (POPs) are synthetic compounds that were intentionally produced in large quantities and have been distributed in the global environment, originating a threat due to their persistence, bioaccumulative potential, and toxicity. POPs reach the Antarctic continent through long-range atmospheric transport (LRAT). In these areas, low temperatures play a significant role in the environmental fate of POPs, retaining them for a long time due to cold trapping by diffusion and wet deposition, acting as a net sink for many POPs. However, in the current context of climate change, the remobilization of POPs that were trapped in water, ice, and soil for decades is happening. Therefore, continuous monitoring of POPs in polar air is necessary to assess whether there is a recent re-release of historical pollutants back to the environment. We reviewed the scientific literature on atmospheric levels of several POP families (polychlorinated biphenyls - PCBs, hexachlorobenzene - HCB, hexachlorocyclohexanes - HCHs, and dichlorodiphenyltrichloroethane - DDT) from 1980 to 2021. We estimated the atmospheric half-life using characteristic decreasing times (TD). We observed that HCB levels in the Antarctic atmosphere were higher than the other target organochlorine pesticides (OCPs), but HCB also displayed higher fluctuations and did not show a significant decrease over time. Conversely, the atmospheric levels of HCHs, some DDTs, and PCBs have decreased significantly. The estimated atmospheric half-lives for POPs decreased in the following order: 4,4' DDE (13.5 years) > 4,4' DDD (12.8 years) > 4,4' DDT (7.4 years) > 2,4' DDE (6.4 years) > 2,4' DDT (6.3 years) > α-HCH (6 years) > HCB (6 years) > 3-HCH (4.2 years). For PCB congeners, they decreased in the following order: PCB 153 (7.6 years) > PCB 138 (6.5 years) > PCB 101 (4.7 years) > PCB 180 (4.6 years) > PCB 28 (4 years) > PCB 52 (3.7 years) > PCB 118 (3.6 years). For HCH isomers and PCBs, the Stockholm Convention (SC) ban on POPs did have an impact on decreasing their levels during the last decades. Nevertheless, their ubiquity in the Antarctic atmosphere shows the problematic issues related to highly persistent synthetic chemicals. © 2023 Thais Luarte et al.Ítem Metabolic Rearrangements Causing Elevated Proline and Polyhydroxybutyrate Accumulation During the Osmotic Adaptation Response of Bacillus megaterium(Frontiers Media S.A., 2020-02) Godard, Thibault; Zühlke, Daniela; Richter, Georg; Wall, Melanie; Rohde, Manfred; Riedel, Katharina; Poblete-Castro, Ignacio; Krull, Rainer; Biedendieck, RebekkaFor many years now, Bacillus megaterium serves as a microbial workhorse for the high-level production of recombinant proteins in the g/L-scale. However, efficient and stable production processes require the knowledge of the molecular adaptation strategies of the host organism to establish optimal environmental conditions. Here, we interrogated the osmotic stress response of B. megaterium using transcriptome, proteome, metabolome, and fluxome analyses. An initial transient adaptation consisted of potassium import and glutamate counterion synthesis. The massive synthesis of the compatible solute proline constituted the second longterm adaptation process. Several stress response enzymes involved in iron scavenging and reactive oxygen species (ROS) fighting proteins showed higher levels under prolonged osmotic stress induced by 1.8 M NaCl. At the same time, the downregulation of the expression of genes of the upper part of glycolysis resulted in the activation of the pentose phosphate pathway (PPP), generating an oversupply of NADPH. The increased production of lactate accompanied by the reduction of acetate secretion partially compensate for the unbalanced (NADH/NAD+) ratio. Besides, the tricarboxylic acid cycle (TCA) mainly supplies the produced NADH, as indicated by the higher mRNA and protein levels of involved enzymes, and further confirmed by 13C flux analyses. As a consequence of the metabolic flux toward acetyl-CoA and the generation of an excess of NADPH, B. megaterium redirected the produced acetyl-CoA toward the polyhydroxybutyrate (PHB) biosynthetic pathway accumulating around 30% of the cell dry weight (CDW) as PHB. This direct relation between osmotic stress and intracellular PHB content has been evidenced for the first time, thus opening new avenues for synthesizing this valuable biopolymer using varying salt concentrations under non-limiting nutrient conditions. © Copyright © 2020 Godard, Zühlke, Richter, Wall, Rohde, Riedel, Poblete-Castro, Krull and Biedendieck.Ítem Photochemistry of P,N-bidentate rhenium(i) tricarbonyl complexes: Reactive species generation and potential application for antibacterial photodynamic therapy(Royal Society of Chemistry, 2021-09) Acosta, Alison; Antipán, Javier; Fernández, Mariano; Prado, Gaspar; Sandoval-Altamirano, Catalina; Günther, Germán; Gutiérrez-Urrutia, Izabook; Poblete-Castro, Ignacio; Vega, Andrés; Pizarro, NancyIn this work, we describe the photoisomerization of facial rhenium(i) tricarbonyl complexes bearing P,N-bidentate pyridyl/phosphine ligands with different chelating rings and anions: RePNBr, RePNTfO, and RePNNBr, which are triggered under irradiation at 365 nm in solutions. The apparent photodegradation rate constants (kapp) depend on the coordinating ability of the solvent, being lowest in acetonitrile. The kapp value increases as the temperature rises, suggesting a reactive IL excited state thermally populated from the MLCT excited state involved. Using the Eyring equation, positive activation enthalpies (ΔH≠) accompanied by high negative values for the activation entropy (ΔS≠) were obtained. These results suggest whatever the P,N-ligand or anion, the reaction proceeds through a strongly solvated or a compact transition state, which is compatible with an associative mechanism for the photoisomerization. A 100-fold decrease in the log10 CFU value is observed for E. coli and S. aureus in irradiated solutions of the compounds, which follows the same tendency as their singlet oxygen generation quantum yield: RePNBr > RePNTfO > RePNNBr, while no antibacterial activity is observed in the darkness. This result indicates that the generation of singlet oxygen plays a key role in the antibacterial capacity of these complexes. © The Royal Society of Chemistry.Ítem Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida(BioMed Central Ltd., 2014-06) Borrero-de Acuña, José M.; Bielecka, Agata; Häussler, Susanne; Schobert, Max; Jahn, Martina; Wittmann, Christoph; Jahn, Dieter; Poblete-Castro, IgnacioBackground: Pseudomnas putida is a natural producer of medium chain length polyhydroxyalkanoates (mcl-PHA), a polymeric precursor of bioplastics. A two-fold increase of mcl-PHA production via inactivation of the glucose dehydrogenase gene gcd, limiting the metabolic flux towards side products like gluconate was achieved before. Here, we investigated the overproduction of enzymes catalyzing limiting steps of mcl-PHA precursor formation. Results: A genome-based in silico model for P. putida KT2440 metabolism was employed to identify potential genetic targets to be engineered for the improvement of mcl-PHA production using glucose as sole carbon source. Here, overproduction of pyruvate dehydrogenase subunit AcoA in the P. putida KT2440 wild type and the Δgcd mutant strains led to an increase of PHA production. In controlled bioreactor batch fermentations PHA production was increased by 33% in the acoA overexpressing wild type and 121% in the acoA overexpressing Δgcd strain in comparison to P. putida KT2440. Overexpression of pgl-encoding 6-phosphoglucolactonase did not influence PHA production. Transcriptome analyses of engineered PHA producing P. putida in comparison to its parental strains revealed the induction of genes encoding glucose 6-phosphate dehydrogenase and pyruvate dehydrogenase. In addition, NADPH seems to be quantitatively consumed for efficient PHA synthesis, since a direct relationship between low levels of NADPH and high concentrations of the biopolymer were observed. In contrast, intracellular levels of NADH were found increased in PHA producing organisms. Conclusion: Production of mcl-PHAs was enhanced in P. putida when grown on glucose via overproduction of a pyruvate dehydrogenase subunit (AcoA) in combination with a deletion of the glucose dehydrogenase (gcd) gene as predicted by in silico elementary flux mode analysis.Ítem The Transcription Factor ArcA Modulates Salmonella’s Metabolism in Response to Neutrophil Hypochlorous Acid-Mediated Stress(Frontiers Media S.A., 2019-12) Pardo-Esté, Coral; Castro-Severyn, Juan; I. Krüger, Gabriel; Cabezas, Carolina Elizabeth; Briones, Alan Cristóbal; Aguirre, Camila; Morales, Naiyulin; Baquedano, Maria Soledad; Sulbaran, Yoelvis Noe; Hidalgo, Alejandro A.; Meneses, Claudio; Poblete-Castro, Ignacio; Castro-Nallar, Eduardo; Valvano, Miguel A.; Saavedra, Claudia P.Salmonella Typhimurium, a bacterial pathogen with high metabolic plasticity, can adapt to different environmental conditions; these traits enhance its virulence by enabling bacterial survival. Neutrophils play important roles in the innate immune response, including the production of microbicidal reactive oxygen species (ROS). In addition, the myeloperoxidase in neutrophils catalyzes the formation of hypochlorous acid (HOCl), a highly toxic molecule that reacts with essential biomolecules, causing oxidative damage including lipid peroxidation and protein carbonylation. The bacterial response regulator ArcA regulates adaptive responses to oxygen levels and influences the survival of Salmonella inside phagocytic cells. Here, we demonstrate by whole transcriptomic analyses that ArcA regulates genes related to various metabolic pathways, enabling bacterial survival during HOCl-stress in vitro. Also, inside neutrophils, ArcA controls the transcription of several metabolic pathways by downregulating the expression of genes related to fatty acid degradation, lysine degradation, and arginine, proline, pyruvate, and propanoate metabolism. ArcA also upregulates genes encoding components of the oxidative pathway. These results underscore the importance of ArcA in ATP generation inside the neutrophil phagosome and its participation in bacterial metabolic adaptations during HOCl stress. © Copyright © 2019 Pardo-Esté, Castro-Severyn, Krüger, Cabezas, Briones, Aguirre, Morales, Baquedano, Sulbaran, Hidalgo, Meneses, Poblete-Castro, Castro-Nallar, Valvano and Saavedra.