Examinando por Autor "Polshaw, J."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem LSQ13fn: A type II-Plateau supernova with a possibly low metallicity progenitor that breaks the standardised candle relation(EDP SCIENCES, 2016-04) Polshaw, J.; Kotak, R.; Dessart, L.; Fraser, M.; Gal-Yam, A.; Inserra, C.; Sim, S. A.; Smartt, S. J.; Sollerman, J.; Baltay, C.; Rabinowitz, D.; Benetti, S.; Botticella, M. T.; Campbell, H.; Chen, T.-W.; Galbany, L.; McKinnon, R.; Nicholl, M.; Smith, K. W.; Sullivan, M.; Takáts, K.; Valenti, S.; Young, D. R.We present optical imaging and spectroscopy of supernova (SN) LSQ13fn, a type II supernova with several hitherto-unseen properties. Although it initially showed strong symmetric spectral emission features attributable to He ii, N iii, and C iii, reminiscent of some interacting SNe, it transitioned into an object that would fall more naturally under a type II-Plateau (IIP) classification. However, its spectral evolution revealed several unusual properties: metal lines appeared later than expected, were weak, and some species were conspicuous by their absence. Furthermore, the line velocities were found to be lower than expected given the plateau brightness, breaking the SN IIP standardised candle method for distance estimates. We found that, in combination with a short phase of early-time ejecta-circumstellar material interaction, metal-poor ejecta, and a large progenitor radius could reasonably account for the observed behaviour. Comparisons with synthetic model spectra of SNe IIP of a given progenitor mass would imply a progenitor star metallicity as low as 0.1 Z⊙. LSQ13fn highlights the diversity of SNe II and the many competing physical effects that come into play towards the final stages of massive star evolution immediately preceding core-collapse.Ítem On Type IIn/Ia-CSM supernovae as exemplified by SN 2012ca(OXFORD UNIV PRESS, 2016-07) Inserra, C.; Fraser, M.; Smartt, S. J.; Benetti, S.; Chen, T.-W.; Childress, M.; Gal-Yam, A.; Howell, D. A.; Kangas, T.; Pignata, G.; Polshaw, J.; Sullivan, M.; Smith, K. W.; Valenti, S.; Young, D. R.; Parker, S.; Seccull, T.; McCrum, M.We present the complete set of ultra-violet, optical and near-infrared photometry and spectroscopy for SN 2012ca, covering the period from 6 d prior to maximum light, until 531 d after maximum. The spectroscopic time series for SN 2012ca is essentially unchanged over 1.5 yr, and appear to be dominated at all epochs by signatures of interaction with a dense circumstellar medium (CSM) rather than the underlying supernova (SN). SN 2012ca is a member of the set of type of the ambiguous IIn/Ia-CSM SNe, the nature of which have been debated extensively in the literature. The two leading scenarios are either a Type Ia SN exploding within a dense CSM from a non-degenerate, evolved companion, or a core-collapse SN from a massive star. While some members of the population have been unequivocally associated with Type Ia SNe, in other cases the association is less certain. While it is possible that SN 2012ca does arise from a thermonuclear SN, this would require a relatively high (between 20 and 70 per cent) efficiency in converting kinetic energy to optical luminosity, and a massive (∼2.3–2.6 M⊙) circumstellar medium. On the basis of energetics, and the results of simple modelling, we suggest that SN 2012ca is more likely associated with a core-collapse SN. This would imply that the observed set of similar SNe to SN 2012ca is in fact originated by two populations, and while these are drawn from physically distinct channels, they can have observationally similar properties.Ítem PESSTO: Survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects(EDP Sciences, 2015-07) Smartt, S.J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D.R.; Sullivan, M.; Pastorello, A.; Benetti, S.; Gal-Yam, A.; Knapic, C.; Molinaro, M.; Smareglia, R.; Smith, K.W.; Taubenberger, S.; Yaron, O.; Anderson, J.P.; Ashall, C.; Balland, C.; Baltay, C.; Barbarino, C.; Bauer, F.E.; Baumont, S.; Bersier, D.; Blagorodnova, N.; Bongard, S.; Botticella, M.T.; Bufano, F.; Bulla, M.; Cappellaro, E.; Campbell, H.; Cellier-Holzem, F.; Chen, T.-W.; Childress, M.J.; Clocchiatti, A.; Contreras, C.; Dall'Ora, M.; Danziger, J.; De Jaeger, T.; De Cia, A.; Della Valle, M.; Dennefeld, M.; Elias-Rosa, N.; Elman, N.; Feindt, U.; Fleury, M.; Gall, E.; Gonzalez-Gaitan, S.; Galbany, L.; Morales Garoffolo, A.; Greggio, L.; Guillou, L.L.; Hachinger, S.; Hadjiyska, E.; Hage, P.E.; Hillebrandt, W.; Hodgkin, S.; Hsiao, E.Y.; James, P.A.; Jerkstrand, A.; Kangas, T.; Kankare, E.; Kotak, R.; Kromer, M.; Kuncarayakti, H.; Leloudas, G.; Lundqvist, P.; Lyman, J.D.; Hook, I.M.; Maguire, K.; Manulis, I.; Margheim, S.J.; Mattila, S.; Maund, J.R.; Mazzali, P.A.; McCrum, M.; McKinnon, R.; Moreno-Raya, M.E.; Nicholl, M.; Nugent, P.; Pain, R.; Pignata, G.; Phillips, M.M.; Polshaw, J.; Pumo, M.; Rabinowitz, D.; Reilly, E.; Romero-Cañizales, C.; Scalzo, R.; Schmidt, B.; Schulze, S.; Sim, S.; Sollerman, J.; Taddia, F.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.; Walker, E.; Walton, N.A.; Wyrzykowski, L.; Yuan, F.; Zampieri, L.Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 Å between 3345-9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 μm and resolutions 23-33 Å) and imaging with broadband JHKs filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ∼15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHKs imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey. © ESO, 2015.