Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Proffitt C.R."

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Multiplicity of Galactic Cepheids from long-baseline interferometry V. High-accuracy orbital parallax and mass of SU Cygni
    (Astronomy and Astrophysics, Volume 6931 January 2025 Article number A111, 2025) Gallenne A.; Evans N.R.; Kervella P.; Monnier J.D.; Proffitt C.R.; Schaefer G.H.; Winston E.M.; Kuraszkiewicz J.; Mérand A.; Pietrzynski G.; Gieren W. k; Pilecki B.; Kraus S. l;; Le Bouquin J.-B.; Anugu N.; Brummelaar T.; Chhabra S.; Codron I.; Davies C.L.; Ennis J.; Gardner T.; Gutierrez M.; Ibrahim N.; Lanthermann C.; Mortimer D.; Setterholm B.R.
    Aims. We aim to accurately measure the dynamical mass and distance of Cepheids by combining radial velocity measurements with interferometric observations. Cepheid mass measurements are particularly necessary for solving the Cepheid mass discrepancy, while independent distance determinations provide a crucial test of the period–luminosity relation and Gaia parallaxes. Methods. We used the multi-telescope interferometric combiner, the Michigan InfraRed Combiner (MIRC) of the Center for High Angular Resolution Astronomy (CHARA) Array, to detect and measure the astrometric positions of the high-contrast companion orbiting the Galactic Cepheid SU Cygni. We also present new radial velocity measurements from ultraviolet spectra taken with the Hubble Space Telescope. The combination of interferometric astrometry with optical and ultraviolet spectroscopy provided the full orbital elements of the system, in addition to component masses and the distance to the Cepheid system. Results. We measured the mass of the Cepheid, MA = 4.859 ± 0.058 M , and its two companions, MBa = 3.595 ± 0.033 M and MBb = 1.546 ± 0.009 M . This is the most accurate existing measurement of the mass of a Galactic Cepheid (1.2%). Comparing with stellar evolution models, we show that the mass predicted by the tracks is higher than the measured mass of the Cepheid, which is similar to the conclusions of our previous work. We also measured the distance to the system to be 926.3 ± 5.0 pc, obtaining an unprecedented parallax precision of 6 µas (0.5%), which is the most precise and accurate distance for a Cepheid. This precision is similar to what is expected by Gaia for its last data release (DR5 in ∼2030) for single stars fainter than G = 13, but is not guaranteed for stars as bright as SU Cyg. Conclusions. We demonstrate that evolutionary models remain incapable of accurately reproducing the measured mass of Cepheids, often predicting higher masses for the expected metallicity, even when factors such as rotation or convective core overshooting are taken into account. Our precise distance measurement allowed us to compare predictions from some period–luminosity relations. We find a disagreement of 0.2–0.5 mag with relations calibrated from photometry, while relations calibrated from a direct distance measurement are in better agreement. © The Authors 2025