Examinando por Autor "Querales, Marvin"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Explainable Machine Learning Techniques to Predict Muscle Injuries in Professional Soccer Players through Biomechanical Analysis(MDPI, 2024-01) Calderón-Díaz, Mailyn; Silvestre Aguirre, Rony; Vásconez, Juan P.; Yáñez, Roberto; Roby, Matías; Querales, Marvin; Salas, RodrigoThere is a significant risk of injury in sports and intense competition due to the demanding physical and psychological requirements. Hamstring strain injuries (HSIs) are the most prevalent type of injury among professional soccer players and are the leading cause of missed days in the sport. These injuries stem from a combination of factors, making it challenging to pinpoint the most crucial risk factors and their interactions, let alone find effective prevention strategies. Recently, there has been growing recognition of the potential of tools provided by artificial intelligence (AI). However, current studies primarily concentrate on enhancing the performance of complex machine learning models, often overlooking their explanatory capabilities. Consequently, medical teams have difficulty interpreting these models and are hesitant to trust them fully. In light of this, there is an increasing need for advanced injury detection and prediction models that can aid doctors in diagnosing or detecting injuries earlier and with greater accuracy. Accordingly, this study aims to identify the biomarkers of muscle injuries in professional soccer players through biomechanical analysis, employing several ML algorithms such as decision tree (DT) methods, discriminant methods, logistic regression, naive Bayes, support vector machine (SVM), K-nearest neighbor (KNN), ensemble methods, boosted and bagged trees, artificial neural networks (ANNs), and XGBoost. In particular, XGBoost is also used to obtain the most important features. The findings highlight that the variables that most effectively differentiate the groups and could serve as reliable predictors for injury prevention are the maximum muscle strength of the hamstrings and the stiffness of the same muscle. With regard to the 35 techniques employed, a precision of up to 78% was achieved with XGBoost, indicating that by considering scientific evidence, suggestions based on various data sources, and expert opinions, it is possible to attain good precision, thus enhancing the reliability of the results for doctors and trainers. Furthermore, the obtained results strongly align with the existing literature, although further specific studies about this sport are necessary to draw a definitive conclusion.Ítem Predicting Cardiovascular Rehabilitation of Patients with Coronary Artery Disease Using Transfer Feature Learning(Multidisciplinary Digital Publishing Institute (MDPI), 2023-02) Torres, Romina; Zurita, Christopher; Mellado, Diego; Nicolis, Orietta; Saavedra, Carolina; Tuesta, Marcelo; Salinas, Matías; Bertini, Ayleen; Pedemonte, Oneglio; Querales, Marvin; Salas, RodrigoCardiovascular diseases represent the leading cause of death worldwide. Thus, cardiovascular rehabilitation programs are crucial to mitigate the deaths caused by this condition each year, mainly in patients with coronary artery disease. COVID-19 was not only a challenge in this area but also an opportunity to open remote or hybrid versions of these programs, potentially reducing the number of patients who leave rehabilitation programs due to geographical/time barriers. This paper presents a method for building a cardiovascular rehabilitation prediction model using retrospective and prospective data with different features using stacked machine learning, transfer feature learning, and the joint distribution adaptation tool to address this problem. We illustrate the method over a Chilean rehabilitation center, where the prediction performance results obtained for 10-fold cross-validation achieved error levels with an NMSE of (Formula presented.) and an (Formula presented.) of (Formula presented.), where the best-achieved performance was an error level with a normalized mean squared error of 0.008 and an (Formula presented.) up to (Formula presented.). The results are encouraging for remote cardiovascular rehabilitation programs because these models could support the prioritization of remote patients needing more help to succeed in the current rehabilitation phase. © 2023 by the authors.