Examinando por Autor "Quezada, Claudia"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Genomic organization of nucleolin gene in carp fish: Evidence for several genes(Sociedad de Biología de Chile, 2006) Quezada, Claudia; Navarro, Cristina; San Martín, Rody; Alvarez, Marco; Molina, Alfredo; Vera, InesThe protein nucleolin, functionally involved in the main steps of ribosome biogenesis, is codified by a single copy gene in mammals. Here we report that at least three different genes codify for this protein in carp fish (Cyprinus carpio). This is the first description of the genomic organization of nucleolin in a teleost. The carp nucleolin gene includes 8.8 kb and contains 16 exons. Promoter cis regulatory elements are similar to constitutive genes, i.e., a putative TATA box, three G/C boxes, and three pyrimidine-rich boxes. As in other species, carp nucleolin gene introns host three snoRNA codifying sequences: U23 from the H/ACA family and two C/D box snoRNAs, U20 and U82. Both U20 and U82 span a complementary sequence with carp 18S rRNA. Additionally, we identified two cDNAs coding for nucleolin, confirming the existence of several nucleolin genes in carp. Amino acidderived sequence from carp cDNAs differ from mammal protein because they span additional acidic domains at the amino end, whose functional significance remains unclear. We performed amino acid sequence comparison and phylogenetic analyses showing that the three isoforms of carp nucleolin, which we describe herein, cluster in two groups. cNUC1 probably diverges from cNUC2 and cNUC3 as result of ancestral fish-specific genome duplication, indeed C. carpio is a tetraploid fish.Ítem Genomic organization of the rDNA cistron of the teleost fish Cyprinus carpio(Sociedad de Biología de Chile, 2003) Vera, María Inés; Molina, Alfredo; Pinto, Rodrigo; Reyes, Mauricio; Álvarez, Marco; Krauskopf, Erwin; Quezada, Claudia; Torres, Jorge; Krauskopf, ManuelThe seasonal adaptation of the teleost Cyprinus carpio to the cyclical changes of its habitat demands physiological compensatory responses. The process involves profound nucleolar adjustments and remarkable changes in rRNA synthesis, which affects ribosomal biosynthesis. In this context, we have demonstrated that the synthesis of several proteins involved in ribosomal biogenesis as protein kinase CK2, ribosomal protein L41 and nucleolin, as well as U3 snoRNP, are differentially regulated in summer-acclimatized carp compared to the cold-season adapted fish. To understand the mechanisms involved in the seasonal regulation of rRNA gene transcription, we have been studying the carp rDNA cistron structure. Because the cis-elements that regulate the expression of the tandem organized ribosomal genes are located in the non-transcribed intergenic spacer (IGS), we analyzed the primary structure of the carp rDNA gene IGS. The gene organization is similar to that described from other vertebrate species, including numerous repetitive sequences, the transcription start site, and some potential cis-elements such as ribosomal enhancers, proximal terminator and transcriptional terminators. Ribosomal DNA is a remarkable case of gene duplication and has been used as a model to test the concerted evolution theory. We performed sequence comparison analyses of 18S rRNA coding sequences from carp with different species, data with which an unrooted phylogram was constructed.