Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Rafiee, Z."

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Model-Free Predictive Current Control of a Voltage Source Inverter
    (Institute of Electrical and Electronics Engineers, 2020-11) Rodriguez, J.; Heydari, R.; Rafiee, Z.; Young, H.; Flores-Bahamonde, F.; Shahparasti, M.
    Conventional model predictive control (MPC) of power converter has been widely applied to power inverters achieving high performance, fast dynamic response, and accurate transient control of power converter. However, the MPC strategy is highly reliant on the accuracy of the inverter model used for the controlled system. Consequently, a parameter or model mismatch between the plant and the controller leads to a sub-optimal performance of MPC. In this paper, a new strategy called model-free predictive control (MF-PC) is proposed to improve such problems. The presented approach is based on a recursive least squares algorithm to identify the parameters of an auto-regressive with exogenous input (ARX) model. The proposed method provides an accurate prediction of the controlled variables without requiring detailed knowledge of the physical system. This new approach and is realized by employing a novel state space identification algorithm into the predictive control structure. The performance of the proposed model-free predictive control method is compared with conventional MPC. The simulation and experimental results show that the proposed method is totally robust against parameters and model changes compared with the conventional model based solutions.