Examinando por Autor "Rivera, D."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem First detection and characterization of Salmonella spp. In poultry and swine raised in backyard production systems in central Chile(Cambridge University Press, 2017-11) Alegria-Moran, R.; Rivera, D.; Toledo, V.; Moreno-Switt, A.I.; Hamilton-West, C.Little is known about Salmonella serovars circulating in backyard poultry and swine populations worldwide. Backyard production systems (BPS) that raise swine and/or poultry are distributed across Chile, but are more heavily concentrated in central Chile, where industrialized systems are in close contact with BPS. This study aims to detect and identify circulating Salmonella serovars in poultry and swine raised in BPS. Bacteriological Salmonella isolation was carried out for 1744 samples collected from 329 BPS in central Chile. Faecal samples were taken from swine, poultry, geese, ducks, turkeys and peacocks, as well as environmental faecal samples. Confirmation of Salmonella spp. was performed using invA-polymerase chain reaction (PCR). Identification of serovars was carried out using a molecular serotyping approach, where serogroups were confirmed by a multiplex PCR of Salmonella serogroup genes for five Salmonella O antigens (i.e., D, B, C1, C2-C3, and E1), along with two PCR amplifications, followed by sequencing of fliC and fljB genes. A total of 25 samples (1·4% of total samples) from 15 BPS (4·6 % of total sampled BPS) were found positive for Salmonella. Positive samples were found in poultry (chickens and ducks), swine and environmental sources. Molecular prediction of serovars on Salmonella isolated showed 52·0% of S. Typhimurium, 16·0% of S. Infantis, 16·0% S. Enteritidis, 8·0% S. Hadar, 4·0% S. Tennessee and 4·0% S. Kentucky. Poor biosecurity measures were found on sampled BPS, where a high percentage of mixed confinement systems (72·8%); and almost half of the sampled BPS with improper management of infected mortalities (e.g. selling the carcasses of infected animals for consumption). Number of birds other than chickens (P = 0·014; OR = 1·04; IC (95%) = 1·01-1·07), mixed productive objective (P = 0·030; OR = 5·35; IC (95%) = 1·24-27·59) and mixed animal replacement origin (P = 0017; OR = 5·19; IC (95%) = 1·35-20·47) were detected as risk factors for BPS positivity to Salmonella spp. This is the first evidence of serovars of Salmonella spp. circulating in BPS from central Chile. Detected serovars have been linked to human and animal clinical outbreaks worldwide and in Chile, highlighting the importance of BPS on the control and dissemination of Salmonella serovars potentially hazardous to public health. Copyright © Cambridge University Press 2017.Ítem Identification of Type VI Secretion Systems Effector Proteins That Contribute to Interbacterial Competition in Salmonella Dublin(Frontiers Media S.A., 2022-02) Amaya, F.; Blondel, C.; Barros-Infante, M.; Rivera, D.; Moreno-Switt, A.; Santiviago, C.; Pezoa, D.The Type VI Secretion System (T6SS) is a multiprotein device that has emerged as an important fitness and virulence factor for many Gram-negative bacteria through the injection of effector proteins into prokaryotic or eukaryotic cells via a contractile mechanism. While some effector proteins specifically target bacterial or eukaryotic cells, others can target both types of cells (trans-kingdom effectors). In Salmonella, five T6SS gene clusters have been identified within pathogenicity islands SPI-6, SPI-19, SPI-20, SPI-21, and SPI-22, which are differentially distributed among serotypes. Salmonella enterica serotype Dublin (S. Dublin) is a cattle-adapted pathogen that harbors both T6SSSPI-6 and T6SSSPI-19. Interestingly, while both systems have been linked to virulence and host colonization in S. Dublin, an antibacterial activity has not been detected for T6SSSPI-6 in this serotype. In addition, there is limited information regarding the repertoire of effector proteins encoded within T6SSSPI-6 and T6SSSPI-19 gene clusters in S. Dublin. In the present study, we demonstrate that T6SSSPI-6 and T6SSSPI-19 of S. Dublin CT_02021853 contribute to interbacterial competition. Bioinformatic and comparative genomic analyses allowed us to identify genes encoding three candidate antibacterial effectors located within SPI-6 and two candidate effectors located within SPI-19. Each antibacterial effector gene is located upstream of a gene encoding a hypothetic immunity protein, thus conforming an effector/immunity (E/I) module. Of note, the genes encoding these effectors and immunity proteins are widely distributed in Salmonella genomes, suggesting a relevant role in interbacterial competition and virulence. Finally, we demonstrate that E/I modules SED_RS01930/SED_RS01935 (encoded in SPI-6), SED_RS06235/SED_RS06230, and SED_RS06335/SED_RS06340 (both encoded in SPI-19) contribute to interbacterial competition in S. Dublin CT_02021853.Ítem Widespread Environmental Presence of Multidrug-Resistant Salmonella in an Equine Veterinary Hospital That Received Local and International Horses(Frontiers Media S.A, 2020-07) Soza-Ossandón, P.; Rivera, D.; Tardone, R.; Riquelme-Neira, R.; García, P.; Hamilton-West, C.; Adell A.D.; González-Rocha, G.; Moreno-Switt, A.I.Salmonella enterica is a highly infectious microorganism responsible for many outbreaks reported in equine hospitals. Outbreaks are characterized by high morbidity and mortality rates, nosocomial transmission to other patients, zoonotic transmission to hospital personnel, and even closure of facilities. In this study, 545 samples (environmental and hospitalized patients) were collected monthly during a 1-year period from human and animal contact surfaces in an equine hospital that received local and international horses. A total of 22 Salmonella isolates were obtained from human contact surfaces (e.g., offices and pharmacy) and animal contact surfaces (e.g., stalls, surgery room, and waterers), and one isolate from a horse. Molecular serotyping revealed 18 isolates as Salmonella Typhimurium and three as Salmonella Infantis. Nineteen isolates were resistant to at least one antimicrobial class, and only two isolates were susceptible to all antimicrobials tested. In addition, we identified nine multidrug-resistant (MDR) isolates in S. Typhimurium, which displayed resistance to up to eight antimicrobials (i.e., amoxicillin/clavulanate, ampicillin, ciprofloxacin, chloramphenicol, streptomycin, gentamicin, trimethoprim/sulfamethoxazole, and tetracycline). Pulsed-field gel electrophoresis (PFGE) revealed the presence of three PFGE patterns permanently present in the environment of the hospital during our study. The persistent environmental presence of MDR Salmonella isolates, along with the fact that local and international horses are attended in this hospital, highlights the importance of improving biosecurity programs to prevent disease in horses and the hospital personnel and also for the global dissemination and acquisition of MDR Salmonella. © Copyright © 2020 Soza-Ossandón, Rivera, Tardone, Riquelme-Neira, García, Hamilton-West, Adell, González-Rocha and Moreno-Switt.