Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Rivera, Marco"

Mostrando 1 - 7 de 7
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Guest Editorial: Special section on predictive control in power electronics, electrical drives and industrial applications
    (Institute of Electrical and Electronics Engineers Inc., 2018-12) Rivera, Marco; Rodriguez, Jose
  • Cargando...
    Miniatura
    Ítem
    Model Predictive Control for Power Converters and Drives: Advances and Trends
    (Institute of Electrical and Electronics Engineers Inc., 2017-02) Vazquez, Sergio; Rodriguez, Jose; Rivera, Marco; Franquelo, Leopoldo G.; Norambuena, Margarita
    Model predictive control (MPC) is a very attractive solution for controlling power electronic converters. The aim of this paper is to present and discuss the latest developments in MPC for power converters and drives, describing the current state of this control strategy and analyzing the new trends and challenges it presents when applied to power electronic systems. The paper revisits the operating principle of MPC and identifies three key elements in the MPC strategies, namely the prediction model, the cost function, and the optimization algorithm. This paper summarizes the most recent research concerning these elements, providing details about the different solutions proposed by the academic and industrial communities. © 2016 IEEE.
  • No hay miniatura disponible
    Ítem
    Model Predictive Control for Power Converters and Drives: Advances and Trends
    (Institute of Electrical and Electronics Engineers Inc., 2017-02) Vazquez, Sergio; Rivera, Marco; Franquelo, Leopoldo G.; Norambuena, Margarita
    Model predictive control (MPC) is a very attractive solution for controlling power electronic converters. The aim of this paper is to present and discuss the latest developments in MPC for power converters and drives, describing the current state of this control strategy and analyzing the new trends and challenges it presents when applied to power electronic systems. The paper revisits the operating principle of MPC and identifies three key elements in the MPC strategies, namely the prediction model, the cost function, and the optimization algorithm. This paper summarizes the most recent research concerning these elements, providing details about the different solutions proposed by the academic and industrial communities. © 2016 IEEE.
  • No hay miniatura disponible
    Ítem
    Model Predictive Control of a Modular Multilevel Converter with Reduced Computational Burden †
    (Multidisciplinary Digital Publishing Institute (MDPI), 2024-06-11) Kadhum, Hussein; Watson, Alan J.; Rivera, Marco; Zanchetta, Pericle; Wheeler, Patrick
    Recent advances in high-power applications employing voltage source converters have been primarily fuelled by the emergence of the modular multilevel converter (MMC) and its derivatives. Model predictive control (MPC) has emerged as an effective way of controlling these converters because of its high response. However, the practical implementation of MPC encounters hurdles, particularly in MMCs featuring many sub-modules per arm. This research introduces an approach termed folding model predictive control (FMPC), coupled with a pre-processing sorting algorithm, tailored for modular multilevel converters. The objective is to alleviate a significant part of the computational burden associated with the control of these converters. The FMPC framework combines multiple control objectives, encompassing AC current, DC current, circulating current, arm energy, and leg energy, within a unified cost function. Both simulation studies and real-time hardware-in-the-loop (HIL) testing are conducted to verify the efficacy of the proposed FMPC. The findings underscore the FMPC’s ability to deliver fast response and robust performance under both steady-state and dynamic operating conditions. Moreover, the FMPC adeptly mitigates circulating currents, reduces total harmonic distortion (THD%), and upholds capacitor voltage stability within acceptable thresholds, even in the presence of harmonic distortions in the AC grid. The practical applicability of MMCs, notwithstanding the presence of a large number of sub-modules (SMs) per arm, is facilitated by the significant reduction in switching states and computational overhead achieved through the FMPC approach.
  • Cargando...
    Miniatura
    Ítem
    Predictive Control in Power Converters and Electrical Drives - Part IV
    (Institute of Electrical and Electronics Engineers Inc., 2016-09) Rivera, Marco; Rodriguez, Jose; Vazquez, Sergio
    The papers in this special section focus on the deployment of predictive control in power converters and electrical drives. © 1982-2012 IEEE.
  • Cargando...
    Miniatura
    Ítem
    Predictive Control in Power Converters and Electrical Drives-Part III
    (Institute of Electrical and Electronics Engineers Inc., 2016-08) Rivera, Marco; Rodriguez, Jose; Vazquez, Sergio
    The papers in this special section focus on predictive control in power converters and electrical drives. With the fast microcontrollers available today, applications of predictive control in power converters and electrical drives are a very powerful and attractive alternative to classical controllers. The use of predictive control offers a number of advantages: very intuitive approach, no need for linear controllers and modulators, easy inclusion of nonlinearities and restrictions, etc. However, predictive control schemes in power converters and electrical drives have not yet been implemented in industrial applications. Nevertheless, after some further progress, it can be expected that the advantages of predictive algorithms will lead to an increased number of industrial applications in the future. © 2016 IEEE.
  • Cargando...
    Miniatura
    Ítem
    Review of model predictive control strategies for matrix converters
    (Institution of Engineering and Technology, 2019-10) Khosravi, Mahyar; Amirbande, Masoume; Khaburi, Davood A.; Rivera, Marco; Riveros, Jose; Rodriguez, Jose; Vahedi, Abolfazl; Wheeler, Patrick
    Matrix converters are a well-known class of direct AC-AC power converter topologies that can be used in applications, where compact volume and low weight are necessary. For good performance, special attention should be paid to the control scheme used for these converters. The model predictive control strategy is a promising, straightforward and flexible choice for controlling various different matrix converter topologies. This work provides a comprehensive study and detailed classification of several predictive control methods and techniques, discussing special capabilities they each add to the operation and control scheme for different matrix converter topologies. This study also considers the issues regarding the implementation of model predictive control strategies for matrix converters. This survey and comparison are intended to be a useful guide for solving the related drawbacks of each topology and to enable the application of this control scheme for matrix converters in practical applications. © 2019 The Institution of Engineering and Technology.