Examinando por Autor "Rojas, F."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Forecasting Models Selection Mechanism for Supply Chain Demand Estimation(ELSEVIER SCIENCE, 2015) Sepúlveda-Rojas, J.P.; Rojas, F.; Valdés-González, H.; Martín, M.S.The aim of this work is to present a selection mechanism of forecast models to contribute to demand estimation in a supply chain. At present, to estimate a product future demand, several forecast models based on historical information - quantitative and qualitative- are used. When companies face this situation, they select a group of forecast models (usually based on a visual basis of the time series), then estimate, and with the forecast error measurement criteria decide which the best method is. But they always have to estimate over all the selected forecast models. Based on that, this paper introduces an alternative methodology to estimate the best-forecast model without the need to estimate all the forecast models or complement with another technique (visual). To do so, the main theoretical fundaments associated to this new methodology are addressed, and then the methodology itself is presented in order to be applied in two real cases of Chilean companies to finally conclude the results of the described mechanism.Ítem Proper motions in the VVV Survey: Results for more than 15 million stars across NGC 6544(EDP Sciences, 2017) Contreras Ramos, R.; Zoccali, M.; Rojas, F.; Rojas-Arriagada, A.; Gárate, M.; Huijse, P.; Gran, F.; Soto, M.; Valcarce, A.A.R.; Estévez, P.A.; Minniti, D.Context. In the last six years, the VISTA Variable in the Vía Láctea (VVV) survey mapped 562 sq. deg. across the bulge and southern disk of the Galaxy. However, a detailed study of these regions, which includes ∼36 globular clusters (GCs) and thousands of open clusters is by no means an easy challenge. High differential reddening and severe crowding along the line of sight makes highly hamper to reliably distinguish stars belonging to different populations and/or systems. Aims. The aim of this study is to separate stars that likely belong to the Galactic GC NGC 6544 from its surrounding field by means of proper motion (PM) techniques. Methods. This work was based upon a new astrometric reduction method optimized for images of the VVV survey. Results. PSF-fitting photometry over the six years baseline of the survey allowed us to obtain a mean precision of ∼0.51 mas yr-1, in each PM coordinate, for stars with Ks< 15 mag. In the area studied here, cluster stars separate very well from field stars, down to the main sequence turnoff and below, allowing us to derive for the first time the absolute PM of NGC 6544. Isochrone fitting on the clean and differential reddening corrected cluster color magnitude diagram yields an age of ∼11-13 Gyr, and metallicity [Fe/H] =-1.5 dex, in agreement with previous studies restricted to the cluster core. We were able to derive the cluster orbit assuming an axisymmetric model of the Galaxy and conclude that NGC 6544 is likely a halo GC. We have not detected tidal tail signatures associated to the cluster, but a remarkable elongation in the galactic center direction has been found. The precision achieved in the PM determination also allows us to separate bulge stars from foreground disk stars, enabling the kinematical selection of bona fide bulge stars across the whole survey area. Conclusions. Kinematical techniques are a fundamental step toward disentangling different stellar populations that overlap in a studied field. Our results show that VVV data is perfectly suitable for this kind of analysis.