Examinando por Autor "Ruiz, Lina María"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Alterations of mitochondrial biology in the oral mucosa of chilean children with autism spectrum disorder (ASD)(Cells, 2019-04-23) Carrasco, Manuel; Salazar, Celia; Tiznado, William; Ruiz, Lina MaríaAutistic Spectrum Disorder (ASD) is characterized by the impairment of socio-communicative skills and the presence of restricted and stereotyped behavior patterns. Recent researches have revealed the influence of mitochondrial physiology on the development of ASD. Several research groups have identified defects in respiratory complexes, coenzyme-Q10 deficiency, increased oxidative damage, decreased of superoxide dismutase (SOD2). A study on the influence of mitochondrial physiology on the development of ASD can provide new alternatives and challenges. That is why we set ourselves the general objective to initiate studies of mitochondrial physiology in Chilean children with ASD. A sample of oral mucosa was collected in a group of 12 children diagnosed with ASD and 12 children without ASD. In children with ASD, we found a significant increase in mitochondrial DNA levels. Likewise, in these children, an increase in the protein oxidation was observed. Finally, a downward trend in the expression of the HIGD2A and SOD2 genes was observed, while DRP1, FIS1, MFN1, MFN2, and OPA1 gene expression show an upward trend. The increment of mitochondrial DNA, high oxidative stress, and high expression of the MFN2 gene could help as a scanner of the mitochondrial function in children with ASD.Ítem Biosystem analysis of the hypoxia inducible domain family member 2A: Implications in cancer biology(MDPI AG, 2020-02) Salazar, Celia; Yañez, Osvaldo; Elorza, Alvaro A.; Cortes, Natalie; García-Beltrán, Olimpo; Tiznado, William; Ruiz, Lina MaríaThe expression of HIGD2A is dependent on oxygen levels, glucose concentration, and cell cycle progression. This gene encodes for protein HIG2A, found in mitochondria and the nucleus, promoting cell survival in hypoxic conditions. The genomic location of HIGD2A is in chromosome 5q35.2, where several chromosomal abnormalities are related to numerous cancers. The analysis of high definition expression profiles of HIGD2A suggests a role for HIG2A in cancer biology. Accordingly, the research objective was to perform a molecular biosystem analysis of HIGD2A aiming to discover HIG2A implications in cancer biology. For this purpose, public databases such as SWISS-MODEL protein structure homology-modelling server, Catalogue of Somatic Mutations in Cancer (COSMIC), Gene Expression Omnibus (GEO), MethHC: a database of DNA methylation and gene expression in human cancer, and microRNA-target interactions database (miRTarBase) were accessed. We also evaluated, by using Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR), the expression of Higd2a gene in healthy bone marrow-liver-spleen tissues of mice after quercetin (50 mg/kg) treatment. Thus, among the structural features of HIG2A protein that may participate in HIG2A translocation to the nucleus are an importin α-dependent nuclear localization signal (NLS), a motif of DNA binding residues and a probable SUMOylating residue. HIGD2A gene is not implicated in cancer via mutation. In addition, DNA methylation and mRNA expression of HIGD2A gene present significant alterations in several cancers; HIGD2A gene showed significant higher expression in Diffuse Large B-cell Lymphoma (DLBCL). Hypoxic tissues characterize the “bone marrow-liver-spleen” DLBCL type. The relative quantification, by using RT-qPCR, showed that Higd2a expression is higher in bone marrow than in the liver or spleen. In addition, it was observed that quercetin modulated the expression of Higd2a gene in mice. As an assembly factor of mitochondrial respirasomes, HIG2A might be unexpectedly involved in the change of cellular energetics happening in cancer. As a result, it is worth continuing to explore the role of HIGD2A in cancer biology. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Ítem Theoretical Study of the Antioxidant Activity of Quercetin Oxidation Products(Frontiers Media S.A., 2019-11) Vásquez-Espinal, Alejandro; Yañez, Osvaldo; Osorio, Edison; Areche, Carlos; García-Beltrán, Olimpo; Ruiz, Lina María; Cassels, Bruce K.; Tiznado, WilliamIt was recently shown that, when tested in cellular systems, quercetin oxidized products (Qox) have significantly better antioxidant activity than quercetin (Q) itself. The main Qox identified in the experiments are either 2,5,7,3′,4′-pentahydroxy-3,4-flavandione (Fl) or its tautomer, 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (Bf). We have now performed a theoretical evaluation of different physicochemical properties using density functional theory (DFT) calculations on Q and its main Qox species. The most stable structures (for Q and Qox) were identified after a structural search on their potential energy surface. Since proton affinities (PAs) are much lower than the bond dissociation enthalpies (BDEs) of phenolic hydrogens, we consider that direct antioxidant activity in these species is mainly due to the sequential proton loss electron transfer (SPLET) mechanism. Moreover, our kinetic studies, according to transition state theory, show that Q is more favored by this mechanism. However, Qox have lower PAs than Q, suggesting that antioxidant activity by the SPLET mechanism should be a result of a balance between proclivity to transfer protons (which favors Qox) and the reaction kinetics of the conjugated base in the sequential electron transfer mechanism (which favors Q). Therefore, our results support the idea that Q is a better direct antioxidant than its oxidized derivatives due to its kinetically favored SPLET reactions. Moreover, our molecular docking calculations indicate a stabilizing interaction between either Q or Qox and the kelch-like ECH-associated protein-1 (Keap1), in the nuclear factor erythroid 2-related factor 2 (Nrf2)-binding site. This should favor the release of the Nrf2 factor, the master regulator of anti-oxidative responses, promoting the expression of the antioxidant responsive element (ARE)-dependent genes. Interestingly, the computed Keap1-metabolite interaction energy is most favored for the Bf compound, which in turn is the most stable oxidized tautomer, according to their computed energies. These results provide further support for the hypothesis that Qox species may be better indirect antioxidants than Q, reducing reactive oxygen species in animal cells by activating endogenous antioxidants. © Copyright © 2019 Vásquez-Espinal, Yañez, Osorio, Areche, García-Beltrán, Ruiz, Cassels and Tiznado.Ítem Theoretical Study of the Antioxidant Activity of Quercetin Oxidation Products(Frontiers Media S.A., 2019-11-27) Vásquez-Espinal, Alejandro; Yañez, Osvaldo; Osorio, Edison; Areche, Carlos; García-Beltrán, Olimpo; Ruiz, Lina María; Cassels, Bruce K.; Cassels B.K.; Tiznado, WilliamIt was recently shown that, when tested in cellular systems, quercetin oxidized products (Qox) have significantly better antioxidant activity than quercetin (Q) itself. The main Qox identified in the experiments are either 2,5,7,3′,4′-pentahydroxy-3,4-flavandione (Fl) or its tautomer, 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (Bf). We have now performed a theoretical evaluation of different physicochemical properties using density functional theory (DFT) calculations on Q and its main Qox species. The most stable structures (for Q and Qox) were identified after a structural search on their potential energy surface. Since proton affinities (PAs) are much lower than the bond dissociation enthalpies (BDEs) of phenolic hydrogens, we consider that direct antioxidant activity in these species is mainly due to the sequential proton loss electron transfer (SPLET) mechanism. Moreover, our kinetic studies, according to transition state theory, show that Q is more favored by this mechanism. However, Qox have lower PAs than Q, suggesting that antioxidant activity by the SPLET mechanism should be a result of a balance between proclivity to transfer protons (which favors Qox) and the reaction kinetics of the conjugated base in the sequential electron transfer mechanism (which favors Q). Therefore, our results support the idea that Q is a better direct antioxidant than its oxidized derivatives due to its kinetically favored SPLET reactions. Moreover, our molecular docking calculations indicate a stabilizing interaction between either Q or Qox and the kelch-like ECH-associated protein-1 (Keap1), in the nuclear factor erythroid 2-related factor 2 (Nrf2)-binding site. This should favor the release of the Nrf2 factor, the master regulator of anti-oxidative responses, promoting the expression of the antioxidant responsive element (ARE)-dependent genes. Interestingly, the computed Keap1-metabolite interaction energy is most favored for the Bf compound, which in turn is the most stable oxidized tautomer, according to their computed energies. These results provide further support for the hypothesis that Qox species may be better indirect antioxidants than Q, reducing reactive oxygen species in animal cells by activating endogenous antioxidants.